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Motivation: nuclear fusion and impurity transport

Ideal situation

• Make plasma, heat it up.
• Energy is produced faster
than it is lost.

• Impurities do not
accumulate.

• Clean, sustainable energy for
everyone!

What actually happens

• Make plasma, heat it up.
• Turbulence causes energy to
leak out.

• Impurities accumulate,
further contributing to
energy loss.

• No net energy gain.

Options

• Build bigger and bigger tokamaks until we finally get one big
enough to hold its energy in. $$$ =

• Develop predictive simulations, figure out how to optimize the
configuration before building an expensive facility. $$ =
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Motivation: validation of impurity transport simulations
Options

• Build bigger and bigger tokamaks until we finally get one big
enough to hold its energy in. $$$ =

• Develop predictive simulations, figure out how to
optimize the configuration before building an expensive
facility. $$ =

How do we get there?

• Need to test simulations against existing experiments.
• Highly sensitive to gradients: all validation work benefits from
improved gradient measurements.

• Impurity transport measurements are key:
• Of fundamental importance to setting the power balance.
• Another channel to check turbulent transport simulations with.
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Profile fitting: a critical step for plasma data analysis
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Gradient:

• Transport codes are highly
sensitive to gradients in ne,
Te, etc.

• Many codes require entire
profiles as inputs.

• Need to propagate profile
uncertainties efficiently.
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Gaussian process regression (GPR) overcomes the many
issues with previous approaches to profile fitting

Old: Splines

• Fit data with piecewise
polynomial.

• Software readily available.

• Pick properties by eye:
subjective, time consuming.

• Inefficient propagation of
profile uncertainty.

New: GPR

• Fit data with multivariate
normal distribution.

• New software had to be
written.

• Pick properties with
statistically rigorous,
automated procedure.

• Enables efficient uncertainty
propagation.
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Gaussian process regression (GPR): a statistically rigorous
method to fit profiles, propagate uncertainty

• Describe data y, fit y∗ as a multivariate normal distribution.
• Can include derivatives, line integrals.
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The covariance kernel sets the smoothness
Covariance kernel
k(x1, x2) = cov[y1, y2] sets how
spatial covariance decays:
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Demonstration: L-mode temperature profile
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Gradient:

• Combine data from core TS, edge
TS, GPC, GPC2, FRCECE

• Force dTe/dr = 0 at r = 0
• Handling the hyperparameters θ:

• MAP: ̂θ = argmaxθ fΘ|Y (θ|y)
• MCMC: fY∗|Y (y∗|y) =

∫ fY∗|Y ,Θ(y∗|y, θ)fΘ|Y (θ|y) dθ
• Key result: σTe,MCMC

≈ σTe,MAP
,

σa/LTe,MCMC
≈ 2.6 × σa/LTe,MAP

• Can use fast MAP when only value
matters , but need slow MCMC
when gradients matter

• Software: gptools.readthedocs.io

GPR can help with all validation
activities.
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Inferring impurity transport coefficients: a nonlinear
inverse problem

D, V

transport
coefficient
profiles

STRAHL

forward
model

ŝ(r, t)

modeled
spectrometer

signals

f (D, V|s) probability
model

s(r, t)
observed
spectrometer
signals

• Diffusion coefficient D, convective velocity V .
• Can only observe s, want to know D, V .
• Only know the forward mapping: ŝ = m(D, V),
but want D, V = m−1(s).

• Key questions:
Existence: Is there a D, V such that ŝ ≈ s?

Uniqueness: How many D, V are there such that ŝ ≈ s?
Stability: How much do D, V change when I perturb s?
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What is wrong, and what I have done about it

Previous methods have
substantial shortcomings

• Error bars not consistent
with intuition.

• Cannot handle sawteeth.
• Different starting points give
different results:

• Multiple solutions?
• Broad region of
acceptable solutions?
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What is wrong, and what I have done about it

Previous methods have
substantial shortcomings

• Error bars not consistent
with intuition.

• Cannot handle sawteeth.
• Different starting points give
different results:

• Multiple solutions?
• Broad region of
acceptable solutions?

Attack the problem two ways

• Fast, linearizedmodel to
get order-of-magnitude

• Slow, complete procedure

Surprising results

• Spatial resolution trumps
temporal resolution.

• ne, Te do not matter.
• Selecting the appropriate
complexity for D, V is really,
really important.
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Painfully simple transport coefficient profiles produce
behaviors representative of what is seen experimentally
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Three figures of merit capture most of the information
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• Informed by theoretical
analysis in [Seguin PRL 1983]
and [Fussmann NF 1986].

• Impurity confinement
time: τimp ∼ f (V /D)/D

• Rise time (of core): tr ∼ f (D)
• Profile broadness (during
decay):
br/a = nZ(r/a)/nZ(0) ∼ f (V /D)
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τimp, tr, b0.75 are all different functions of D, V
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• Trends consistent with
[Seguin PRL 1983],
[Fussmann NF 1986]

• τimp ∼ f (V /D)/D
tr ∼ f (D)

b0.75 =
nZ(0.75)
nZ(0)

∼ f (V /D)



The unique intersection of the contours of τimp, tr and b0.75
determines D, V
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Making the picture quantitative

• Linearize each figure of merit yi = gi(D, V) with respect to D, V .
• Assume Gaussian noise: yi ∼ 𝒩 (μyi , σ

2
yi).

• Transport coefficient vector T = [D, V]T ∼ 𝒩 (μT|y ,ΣT|y):

μT|y = (CTΣ−1
y C)−1 (CTΣ−1

y (y − a))
ΣT|y = (CTΣ−1

y C)−1

• μT|y is the actual prediction of T = [D, V]T,
ΣT|y contains the uncertainties.

• a and C come from the linearization.
• y contains the actual observations,
Σy contains the uncertainties.

This is exactly the result ofweighted least squares regression:
the analysis attempts tomatch the observations in the least
squares sense.

19/41



The linearized model can estimate the uncertainties on D
and V given the uncertainties on τimp, tr and b0.75
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Either rise time or broadness needs to be known to high
precision
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• Green contour: σV /V0 = ±10% (what previous plot gave).
• Assume confinement time is known precisely.
• Only need to know one of tr or b0.75 to high precision:
only a limited window where they are on an equal footing.
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Characterizing the diagnostic requirements

Three key parameters:

1. Number of channels, N

2. The time resolution, Δt

3. The relative noise level, u = σs/s

Method:

1. Generate many synthetic data sets with different realizations
of Gaussian noise and phase with respect to injection.

2. Determine τimp, tr and br/a = nZ(r/a)/nZ(0) for each realization.

3. Compute στimp
, σtr and σbr/a from the ensemble of fits.

4. Compute σD and σV .
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Spatial resolution is more important than time resolution
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Implications of the linearized model

• C-Mod’s diagnostics appear to be sufficient to reproduce
simple D, V profiles.

• Spatial resolution is more important than time resolution:
• Better to invest inmore detectors than fancier detectors.
• Can handle sawteeth by using a single injection.

Caveats

• Ignored details of tomographic inversion.
• Threw out lots of other information in the signals.
• Used painfully oversimplified D, V profiles.

24/41



Building the full analysis: two key steps to inference
Bayes’ rule combines information from data with prior
knowledge/constraints:

fD,V|y(D, V|y)⏟⏟⏟⏟⏟⏟⏟⏟⏟
posterior:

everything known about D, V

=

likelihood:
information from data y

⏞⏞⏞⏞⏞⏞⏞⏞⏞fy|D,V (y|D, V) ⋅

prior:
prior knowledge, constraints

⏞⏞⏞⏞⏞fD,V (D, V)
fy(y)⏟

evidence:
probability of data

under given parameterization,ℳ

Parameter estimation Find the values of D, V consistent with the
data y: characterize fD,V|y(D, V|y).

Model selection Find the best way of parameterizing D, V by
maximizing fy(y).

MultiNest [Feroz MNRAS 2008, 2009; Buchner AA 2014] produces
samples from fD,V|y(D, V|y) and an estimate of fy(y).
Can handle multimodal posterior distributions.
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maximizing fy|ℳ(y|ℳ).

MultiNest [Feroz MNRAS 2008, 2009; Buchner AA 2014] produces
samples from fD,V|y,ℳ(D, V|y, ℳ) and an estimate of fy|ℳ(y|ℳ).
Can handle multimodal posterior distributions.
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MultiNest successfully reconstructs simple D, V profiles
(synthetic data)
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Previous analysis ascribed all uncertainty in D, V to ne, Te
(experimental data)

Previous approach [Howard NF 2012,
Chilenski NF 2015]:

1. Model D, V with piecewise
linear splines.

2. Generate random samples of ne,
Te according to diagnostic
uncertainties.

3. For each ne, Te realization,
generate a random distribution
of spline knots.

4. Given ne, Te and the spline
knots, run an optimizer to find
the best-fitting D, V profiles.

5. Find mean, standard deviation
of resulting profiles.
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New result: ne, Te have little effect on D, V (synthetic data)
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• 32 HiReX-SR chords, Δt = 6ms,
5% noise

• Fit ne, Te with GPR, propagated
uncertainty using 3 eigenvalues for
each.

• Result is identical to fixed ne, Te
case: exactly the opposite of
what was expected from the
previous work.

28/41



The rate coefficients have limited sensitivity to ne, Te over
the experimental uncertainties
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• 1000 samples from ne, Te
• ±3σ band on α, S not even
visible!

• These are the only ways that
ne, Te enter the calculation.
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How to explain the previous result? (1) (experimental data)

There is little correlation (ρ) between ne, Te and D, V
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How to explain the previous result? (2) (experimental data)

There is little correlation (ρ) between ne, Te and D, V
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How to explain the previous result? (3) (experimental data)

There is strong correlation (ρ) between knots and D, V
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How to explain the previous result? (4) (experimental data)

The variation seen before comes from moving the knots
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• Correlation of D, V with knot
locations ismuch higher than
with ne, Te.

• Implies the previous
parameterization is too
inflexible.

• Free knots cause degenerate
posterior distributions, need to
add fixed position knots.

• Selecting the right level of
complexity is critical.
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Evidence fy(y) successfully selects simple model
(synthetic data)
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• True model has 1 coefficient.
• Linear trend is consistent
with [Schwarz AS 1978]:

ln fy(y) ≈ ln fy| ̂θ(y| ̂θ) − d
2
lnN

(d is number of parameters)
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Testing with more complicated synthetic data
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• Used result from old analysis as true
profile:

• Linear splines with 5 coefficients
• Spline knots randomly varied to
produce smooth curve

• Realistic diagnostic configuration:
• 32 HiReX-SR chords (Ca18+), 6ms
time resolution, 5% noise

• 2 VUV chords (Ca17+, Ca16+), 2ms
time resolution, 5% noise
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More complicated synthetic data pose a challenge
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Model selection is expensive

• 7 coefficient case took 7000
CPU-hours = 15 wall-clock
days!

• Need to speed up STRAHL,
deploy on cluster to make
this practical.
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Results only resemble true profile when a minimum level
of complexity is obtained…despite “good”match to data
(synthetic data)
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Getting D, V right is very difficult

• Do not need to worry about ne, Te uncertainties.
• Need to select appropriate model complexity rigorously:

• Any result obtained using overly simple functions to describe
D, V is questionable.

→ There is now an opportunity to reassess our entire picture
of howwell gyrokinetics describes impurity transport.

• Proper model selection is very time consuming.

Always ask the following:

1. How is parameter estimation performed? How are parameter
uncertainties estimated?

2. How is model selection performed? Is a reasonable level of
complexity for D, V used?

3. Was the analysis procedure thoroughly verified with realistic
synthetic data?
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Experimental data analysis techniques for validation of
tokamak impurity transport simulations

1 Motivation: validation of turbulent transport simulations

2 Profile fitting with nonstationary Gaussian process regression

3 Inferring impurity transport coefficients: a very difficult inverse
problem

4 Conclusions and future directions
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Publications
Published

Chilenski NF 2015 Use of nonstationary GPR to fit L-mode profiles,
propagate uncertainty.

Chilenski CPC 2016 Open source Python code for working with
magnetic reconstruction data.

In progress

• Inferring second derivatives to test theories of momentum
transport.

• Profile fitting incorporating TCI data.
• Profile fitting incorporating mtanh mean function.
• New approaches for making nonstationary Gaussian processes.
• Linearized impurity transport analysis.
• Complete impurity transport analysis.
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Conclusions, contributions, and future work

Contributions of this thesis work

• New procedure and accompanying software for fitting plasma
profiles: can improve all validation efforts.

• Linearized model for estimating diagnostic requirements: time
resolution is not as important as was previously believed.

• Full procedure for inferring D, V : model selection is critical,
ne, Te haveminimal effect.

Future directions to build on this work

• Streamline impurity transport analysis, deploy on cluster.
• Handle sawteeth properly.
• Reassess validation of impurity transport simulations.

“The Freidberg question”scorecard: =8, =1, =3
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