M.A. Chilenski

MIT Department of Nuclear Science and Engineering

October 13, 2016

This material is based upon work conducted using the Alcator C-Mod tokamak, a DOE Office of Science user facility. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FC02-99ER54512. This material is based upon work supported in part by the U.S. Department of Energy Office of Science Graduate Research Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract number DE-AC05-06OR23100. The XEUS and LoWEUS spectrometers were developed at the LLNL EBIT lab. Work at LLNL was performed under the auspices of the US DOE under contract DE-AC52-07NA-27344. Some of the computations using STRAHL were carried out on the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki.

1 Motivation: validation of turbulent transport simulations

2 Profile fitting with nonstationary Gaussian process regression

3 Inferring impurity transport coefficients: a very difficult inverse problem

1 Motivation: validation of turbulent transport simulations

- 2 Profile fitting with nonstationary Gaussian process regression
- 3 Inferring impurity transport coefficients: a very difficult inverse problem
- 4 Conclusions and future directions

Motivation: nuclear fusion and impurity transport

Ideal situation

- Make plasma, heat it up.
- Energy is produced faster than it is lost.
- Impurities do not accumulate.
- Clean, sustainable energy for everyone!

What actually happens

- Make plasma, heat it up.
- Turbulence causes energy to leak out.
- Impurities accumulate, further contributing to energy loss.
- No net energy gain. 😕

Options

- Build bigger and bigger tokamaks until we finally get one big enough to hold its energy in. \$\$\$ =
- Develop predictive simulations, figure out how to optimize the configuration *before* building an expensive facility. \$\$ = ⁽²⁾

Motivation: validation of impurity transport simulations Options

- Build bigger and bigger tokamaks until we finally get one big enough to hold its energy in. \$\$\$ =
- Develop predictive simulations, figure out how to optimize the configuration *before* building an expensive facility. \$\$ = ¹

How do we get there?

- Need to test simulations against existing experiments.
- Highly sensitive to gradients: *all* validation work benefits from improved gradient measurements.
- Impurity transport measurements are key:
 - Of fundamental importance to setting the power balance.
 - Another channel to check turbulent transport simulations with.

1 Motivation: validation of turbulent transport simulations

2 Profile fitting with nonstationary Gaussian process regression

- 3 Inferring impurity transport coefficients: a very difficult inverse problem
- 4 Conclusions and future directions

Profile fitting: a critical step for plasma data analysis

- Transport codes are highly sensitive to *gradients* in n_e , T_e , etc.
- Many codes require *entire profiles* as inputs.
- Need to propagate profile uncertainties efficiently.

Gaussian process regression (GPR) overcomes the many issues with previous approaches to profile fitting

Old: Splines

- Fit data with piecewise polynomial.
- Software readily available.
- Pick properties by eye: subjective, time consuming.
- Inefficient propagation of profile uncertainty.

New: GPR

- Fit data with multivariate normal distribution.
- New software had to be written.
- Pick properties with statistically rigorous, automated procedure.
- Enables efficient uncertainty propagation.

Gaussian process regression (GPR): a statistically rigorous method to fit profiles, propagate uncertainty

- Describe data y, fit y_* as a multivariate normal distribution.
- Can include derivatives, line integrals.

Gaussian process regression (GPR): a statistically rigorous method to fit profiles, propagate uncertainty

- Describe data y, fit y_* as a multivariate normal distribution.
- Can include derivatives, line integrals.

The covariance kernel sets the smoothness

Covariance kernel

2.0

 $k(x_1, x_2) = cov[y_1, y_2]$ sets how spatial covariance decays:

Samples from GP

Key step: infer hyperparameters *θ* of covariance kernel:

• maximize $f_{\boldsymbol{\Theta}|\boldsymbol{Y}}(\boldsymbol{\theta}|\boldsymbol{y})$, or

• sample
$$\widetilde{\boldsymbol{\theta}} \sim f_{\boldsymbol{\Theta}|\boldsymbol{Y}}(\boldsymbol{\theta}|\boldsymbol{y})$$

- Combine data from core TS, edge TS, GPC, GPC2, FRCECE
- Force $dT_e/dr = 0$ at r = 0
- Handling the hyperparameters *θ*:
 - MAP: $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}|\boldsymbol{Y}}(\boldsymbol{\theta}|\boldsymbol{y})$
 - MCMC: $f_{Y_*|Y}(\boldsymbol{y}_*|\boldsymbol{y}) = \int f_{Y_*|Y,\boldsymbol{\Theta}}(\boldsymbol{y}_*|\boldsymbol{y},\boldsymbol{\theta}) f_{\boldsymbol{\Theta}|Y}(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}$
- Key result: $\sigma_{T_{e,MCMC}} \approx \sigma_{T_{e,MAP}'}$ $\sigma_{a/L_{T_{e},MCMC}} \approx 2.6 \times \sigma_{a/L_{T_{e},MAP}}$
- Can use fast MAP when only value matters ⁽¹⁾, but need slow MCMC when gradients matter ⁽¹⁾

Software: gptools.readthedocs.io
GPR can help with all validation
activities.

- Combine data from core TS, edge TS, GPC, GPC2, FRCECE
- Force $dT_e/dr = 0$ at r = 0
- Handling the hyperparameters *θ*:
 - MAP: $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}|\boldsymbol{Y}}(\boldsymbol{\theta}|\boldsymbol{y})$
 - MCMC: $f_{Y_*|Y}(\boldsymbol{y}_*|\boldsymbol{y}) = \int f_{Y_*|Y,\boldsymbol{\Theta}}(\boldsymbol{y}_*|\boldsymbol{y},\boldsymbol{\theta}) f_{\boldsymbol{\Theta}|Y}(\boldsymbol{\theta}|\boldsymbol{y}) \,\mathrm{d}\boldsymbol{\theta}$
- Key result: $\sigma_{T_{e,MCMC}} \approx \sigma_{T_{e,MAP}'}$ $\sigma_{a/L_{T_{e},MCMC}} \approx 2.6 \times \sigma_{a/L_{T_{e},MAP}}$
- Can use fast MAP when only value matters , but need slow MCMC when gradients matter

Software: gptools.readthedocs.io
GPR can help with all validation
activities.

- Combine data from core TS, edge TS, GPC, GPC2, FRCECE
- Force $dT_e/dr = 0$ at r = 0
- Handling the hyperparameters *θ*:
 - MAP: $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} f_{\boldsymbol{\Theta}|\boldsymbol{Y}}(\boldsymbol{\theta}|\boldsymbol{y})$
 - MCMC: $f_{\mathbf{Y}_*|\mathbf{Y}}(\mathbf{y}_*|\mathbf{y}) = \int f_{\mathbf{Y}_*|\mathbf{Y},\mathbf{\Theta}}(\mathbf{y}_*|\mathbf{y},\mathbf{\theta}) f_{\mathbf{\Theta}|\mathbf{Y}}(\mathbf{\theta}|\mathbf{y}) \,\mathrm{d}\mathbf{\theta}$
- Key result: $\sigma_{T_{e,MCMC}} \approx \sigma_{T_{e,MAP}}$, $\sigma_{a/L_{T_{e},MCMC}} \approx 2.6 \times \sigma_{a/L_{T_{e},MAP}}$
- Can use fast MAP when only value matters , but need slow MCMC when gradients matter

Software: gptools.readthedocs.io
GPR can help with all validation
activities.

- Combine data from core TS, edge TS, GPC, GPC2, FRCECE
- Force $dT_e/dr = 0$ at r = 0
- Handling the hyperparameters *θ*:
 - MAP: $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}|\boldsymbol{Y}}(\boldsymbol{\theta}|\boldsymbol{y})$
 - MCMC: $f_{\mathbf{Y}_*|\mathbf{Y}}(\mathbf{y}_*|\mathbf{y}) = \int f_{\mathbf{Y}_*|\mathbf{Y},\mathbf{\Theta}}(\mathbf{y}_*|\mathbf{y},\mathbf{\Theta}) f_{\mathbf{\Theta}|\mathbf{Y}}(\mathbf{\Theta}|\mathbf{y}) \,\mathrm{d}\mathbf{\Theta}$
- Key result: $\sigma_{T_{e,MCMC}} \approx \sigma_{T_{e,MAP}}'$ $\sigma_{a/L_{T_e,MCMC}} \approx 2.6 \times \sigma_{a/L_{T_e,MAP}}$
- Can use fast MAP when only value matters ⁽¹⁾, but need slow MCMC when gradients matter

 Software: gptools.readthedocs.io
GPR can help with all validation activities.

- Combine data from core TS, edge TS, GPC, GPC2, FRCECE
- Force $dT_e/dr = 0$ at r = 0
- Handling the hyperparameters *θ*:
 - MAP: $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}|\boldsymbol{Y}}(\boldsymbol{\theta}|\boldsymbol{y})$
 - MCMC: $f_{\mathbf{Y}_*|\mathbf{Y}}(\mathbf{y}_*|\mathbf{y}) = \int f_{\mathbf{Y}_*|\mathbf{Y},\mathbf{\Theta}}(\mathbf{y}_*|\mathbf{y},\mathbf{\Theta}) f_{\mathbf{\Theta}|\mathbf{Y}}(\mathbf{\Theta}|\mathbf{y}) \,\mathrm{d}\mathbf{\Theta}$
- Key result: $\sigma_{T_{e,MCMC}} \approx \sigma_{T_{e,MAP}}$, $\sigma_{a/L_{T_e,MCMC}} \approx 2.6 \times \sigma_{a/L_{T_e,MAP}}$
- Can use fast MAP when only value matters ⁽¹⁾, but need slow MCMC when gradients matter ⁽²⁾
- Software: gptools.readthedocs.io

GPR can help with all validation activities.

1 Motivation: validation of turbulent transport simulations

2 Profile fitting with nonstationary Gaussian process regression

3 Inferring impurity transport coefficients: a very difficult inverse problem

4 Conclusions and future directions

Inferring impurity transport coefficients: a nonlinear inverse problem

- Diffusion coefficient *D*, convective velocity *V*.
- Can only observe s, want to know D, V.
- Only know the forward mapping: $\hat{s} = m(D, V)$, but want $D, V = m^{-1}(s)$.
- Key questions:

Existence: Is there a *D*, *V* such that $\hat{s} \approx s$? Uniqueness: How many *D*, *V* are there such that $\hat{s} \approx s$? Stability: How much do *D*, *V* change when I perturb *s*?

What is wrong, and what I have done about it

Previous methods have substantial shortcomings

- Error bars not consistent with intuition.
- · Cannot handle sawteeth.
- Different starting points give different results:
 - Multiple solutions?
 - Broad region of acceptable solutions?

What is wrong, and what I have done about it

Previous methods have substantial shortcomings

- Error bars not consistent with intuition.
- · Cannot handle sawteeth.
- Different starting points give different results:
 - Multiple solutions?
 - Broad region of acceptable solutions?

Attack the problem two ways

- Fast, linearized model to get order-of-magnitude
- Slow, complete procedure

Surprising results

- Spatial resolution trumps temporal resolution.
- n_e, T_e do not matter.
- Selecting the appropriate complexity for *D*, *V* is really, really important.

Painfully simple transport coefficient profiles produce behaviors representative of what is seen experimentally

Three figures of merit capture most of the information

- Informed by theoretical analysis in [Seguin PRL 1983] and [Fussmann NF 1986].
- Impurity confinement time: $\tau_{imp} \sim f(V/D)/D$
- **Rise time** (of core): $t_r \sim f(D)$
- Profile broadness (during decay):

 $b_{r/a} = n_Z(r/a)/n_Z(0) \sim f(V/D)$

$\tau_{\rm imp}$, $t_{\rm r}$, $b_{0.75}$ are all different functions of D, V

Making the picture quantitative

- Linearize each figure of merit $y_i = g_i(D, V)$ with respect to D, V.
- Assume Gaussian noise: $y_i \sim \mathcal{N}(\mu_{y_i}, \sigma_{y_i}^2)$.
- Transport coefficient vector $\boldsymbol{T} = [D, V]^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathcal{T}|\boldsymbol{y}}, \boldsymbol{\Sigma}_{\mathcal{T}|\boldsymbol{y}})$:

$$\begin{split} \boldsymbol{\mu}_{\boldsymbol{\mathcal{T}}|\boldsymbol{y}} &= (\boldsymbol{\mathsf{C}}^{\mathsf{T}}\boldsymbol{\boldsymbol{\Sigma}}_{\boldsymbol{y}}^{-1}\boldsymbol{\mathsf{C}})^{-1}\left(\boldsymbol{\mathsf{C}}^{\mathsf{T}}\boldsymbol{\boldsymbol{\Sigma}}_{\boldsymbol{y}}^{-1}(\boldsymbol{y}-\boldsymbol{a})\right)\\ \boldsymbol{\boldsymbol{\Sigma}}_{\boldsymbol{\mathcal{T}}|\boldsymbol{y}} &= (\boldsymbol{\mathsf{C}}^{\mathsf{T}}\boldsymbol{\boldsymbol{\Sigma}}_{\boldsymbol{y}}^{-1}\boldsymbol{\mathsf{C}})^{-1} \end{split}$$

- $\boldsymbol{\mu}_{T|\boldsymbol{y}}$ is the actual prediction of $\boldsymbol{T} = [D, V]^{\mathsf{T}}$, $\boldsymbol{\Sigma}_{T|\boldsymbol{y}}$ contains the uncertainties.
- *a* and **C** come from the linearization.
- y contains the actual observations,
 - Σ_y contains the uncertainties.

This is exactly the result of *weighted least squares regression:* the analysis attempts to match the observations in the least squares sense.

The linearized model can estimate the uncertainties on D and V given the uncertainties on τ_{imp} , t_r and $b_{0.75}$ Requirements for 10% uncertainty in D and V 10⁻¹ broadness $\sigma_{b_{0.75}}$ 10^{-2} 10^{-4} (s) 10^{-3} time 0^{1} time 10^{-2} 10^{-2} to $10^$ 10⁻³ 10^{-4} rise time o_{t,} [s]

Either rise time or broadness needs to be known to high precision

- Green contour: $\sigma_V / V_0 = \pm 10\%$ (what previous plot gave).
- Assume confinement time is known precisely.
- Only need to know one of t_r or b_{0.75} to high precision: only a limited window where they are on an equal footing.

Characterizing the diagnostic requirements

Three key parameters:

- 1. Number of channels, N
- 2. The time resolution, Δt
- 3. The relative noise level, $u = \sigma_s/s$

Method:

- 1. Generate many synthetic data sets with different realizations of Gaussian noise and phase with respect to injection.
- 2. Determine τ_{imp} , t_r and $b_{r/a} = n_Z(r/a)/n_Z(0)$ for each realization.
- 3. Compute $\sigma_{\tau_{imp}}$, σ_{t_r} and $\sigma_{b_{r/a}}$ from the ensemble of fits.
- 4. Compute σ_D and σ_V .

Spatial resolution is more important than time resolution Uncertainty in V 1 point 3 points 10⁰ 15.0 rel. noise *u* 13.5 10^{-1} 12.0 10^{-2} 10.5 9.0 σ_V [m/s 10^{-3} 5 points 32 points 7.5 10⁰ 6.0 rel. noise *u* 10^{-1} 4.5 3.0 10^{-2} 1.5 10^{-3} 0.0 10^{-4} 10^{-3} $10^{-2}10^{-4}$ 10^{-3} 10^{-2} time res. Δt [s] time res. Δt [s] Dashed lines: contours of constant photon rate Green contours: $\sigma_V/V_0 = \pm 10\%$

Implications of the linearized model

- C-Mod's diagnostics appear to be sufficient to reproduce simple D, V profiles.
- Spatial resolution is more important than time resolution:
 - Better to invest in more detectors than fancier detectors.
 - Can handle sawteeth by using a *single* injection. 😌

Caveats

- · Ignored details of tomographic inversion.
- Threw out lots of other information in the signals.
- Used painfully oversimplified D, V profiles.

Bayes' rule combines information from data with prior knowledge/constraints:

Parameter estimation Find the values of *D*, *V* consistent with the data *y*: characterize $f_{D,V|y}(D, V|y)$.

Model selection Find the best way of parameterizing D, V by maximizing $f_y(y)$.

MultiNest [Feroz MNRAS 2008, 2009; Buchner AA 2014] produces samples from $f_{D,V|y}(D, V|y)$ and an estimate of $f_y(y)$. Can handle multimodal posterior distributions.

Bayes' rule combines information from data with prior knowledge/constraints:

Parameter estimation Find the values of *D*, *V* consistent with the data *y*: characterize $f_{D,V|y}(D, V|y)$.

Model selection Find the best way of parameterizing D, V by maximizing $f_y(y)$.

MultiNest [Feroz MNRAS 2008, 2009; Buchner AA 2014] produces samples from $f_{D,V|y}(D, V|y)$ and an estimate of $f_y(y)$. Can handle multimodal posterior distributions.

Bayes' rule combines information from data with prior knowledge/constraints:

Parameter estimation Find the values of *D*, *V* consistent with the data *y*: characterize $f_{D,V|y}(D, V|y)$.

Model selection Find the best way of parameterizing D, V by maximizing $f_y(y)$.

MultiNest [Feroz MNRAS 2008, 2009; Buchner AA 2014] produces samples from $f_{D,V|y}(D, V|y)$ and an estimate of $f_y(y)$. Can handle multimodal posterior distributions.

Bayes' rule combines information from data with prior

knowledge/constraints:

Parameter estimation Find the values of *D*, *V* consistent with the data *y*: characterize $f_{D,V|y,\mathcal{M}}(D, V|y, \mathcal{M})$.

Model selection Find the best way of parameterizing *D*, *V* by maximizing $f_{y|\mathcal{M}}(y|\mathcal{M})$.

MultiNest [Feroz MNRAS 2008, 2009; Buchner AA 2014] produces samples from $f_{D,V|y,\mathcal{M}}(D,V|y,\mathcal{M})$ and an estimate of $f_{y|\mathcal{M}}(y|\mathcal{M})$. Can handle multimodal posterior distributions.

Bayes' rule combines information from data with prior

knowledge/constraints:

Parameter estimation Find the values of *D*, *V* consistent with the data *y*: characterize $f_{D,V|y,\mathcal{M}}(D,V|y,\mathcal{M})$. Model selection Find the best way of parameterizing *D*, *V* by maximizing $f_{y|\mathcal{M}}(y|\mathcal{M})$.

MultiNest [Feroz MNRAS 2008, 2009; Buchner AA 2014] produces samples from $f_{D,V|y,\mathcal{M}}(D,V|y,\mathcal{M})$ and an estimate of $f_{y|\mathcal{M}}(y|\mathcal{M})$. Can handle multimodal posterior distributions.

MultiNest successfully reconstructs simple D, V profiles

D [m²/s] V [m/s] _{26/41}

MultiNest successfully reconstructs simple D, V profiles

D [m²/s] *V*

V [m/s] 26/41

Previous analysis ascribed all uncertainty in D, V to n_{e} , T_{e}

(experimental data)

Previous approach [Howard NF 2012, Chilenski NF 2015]:

- 1. Model *D*, *V* with piecewise linear splines.
- 2. Generate random samples of n_{e} , T_{e} according to diagnostic uncertainties.
- For each n_e, T_e realization, generate a random distribution of spline knots.
- Given n_e, T_e and the spline knots, run an optimizer to find the best-fitting D, V profiles.
- 5. Find mean, standard deviation of resulting profiles.

New result: n_e , T_e have little effect on D, V

- 32 HiReX-SR chords, $\Delta t = 6$ ms, 5% noise
- Fit *n*_e, *T*_e with GPR, propagated uncertainty using 3 eigenvalues for each.
- Result is identical to fixed n_e, T_e case: exactly the opposite of what was expected from the previous work.

The rate coefficients have limited sensitivity to n_{a} , T_{a} over

the experimental uncertainties Recombination

- 1000 samples from n_{e} , T_{e}
- $\pm 3\sigma$ band on *a*, *S* not even
- These are the only ways that n_{e} , T_{e} enter the calculation.

r/a

How to explain the previous result? (2) (experimental data) There is little correlation (ρ) between n_e , T_e and D, V

How to explain the previous result? (3) (experimental data) There is strong correlation (ρ) between knots and D, V

How to explain the previous result? (4) *(experimental data)* The variation seen before comes from moving the knots

- Correlation of *D*, *V* with knot locations is *much* higher than with n_e, T_e.
- Implies the previous parameterization is too inflexible.
- Free knots cause degenerate posterior distributions, need to add *fixed position* knots.
- Selecting the right level of complexity is critical.

Evidence $f_v(y)$ successfully selects simple model

(synthetic data)

4

Testing with more complicated synthetic data

- Used result from old analysis as true profile:
 - · Linear splines with 5 coefficients
 - Spline knots randomly varied to produce smooth curve
- Realistic diagnostic configuration:
 - 32 HiReX-SR chords (Ca¹⁸⁺), 6 ms time resolution, 5% noise
 - 2 VUV chords (Ca¹⁷⁺, Ca¹⁶⁺), 2 ms time resolution, 5% noise

More complicated synthetic data pose a challenge

Results only resemble true profile when a minimum level of complexity is obtained...despite "good" match to data

Getting D, V right is very difficult

- Do not need to worry about $n_{\rm e}$, $T_{\rm e}$ uncertainties. 😌
- *Need* to select appropriate model complexity rigorously:
 - Any result obtained using overly simple functions to describe *D*, *V* is questionable.
 - → There is now an opportunity to reassess our entire picture of how well gyrokinetics describes impurity transport.
 - Proper model selection is very time consuming.

Always ask the following:

- 1. How is parameter estimation performed? How are parameter uncertainties estimated?
- 2. How is model selection performed? Is a reasonable level of complexity for *D*, *V* used?
- 3. Was the analysis procedure thoroughly verified with *realistic* synthetic data?

1 Motivation: validation of turbulent transport simulations

2 Profile fitting with nonstationary Gaussian process regression

3 Inferring impurity transport coefficients: a very difficult inverse problem

Publications

Published

Chilenski NF 2015 Use of nonstationary GPR to fit L-mode profiles, propagate uncertainty.

Chilenski CPC 2016 Open source Python code for working with magnetic reconstruction data.

In progress

- Inferring *second* derivatives to test theories of momentum transport.
- Profile fitting incorporating TCI data.
- Profile fitting incorporating mtanh mean function.
- New approaches for making nonstationary Gaussian processes.
- · Linearized impurity transport analysis.
- Complete impurity transport analysis.

Conclusions, contributions, and future work

Contributions of this thesis work

- New procedure and accompanying software for fitting plasma profiles: can improve all validation efforts.
- Linearized model for estimating diagnostic requirements: **time** resolution is not as important as was previously believed.
- Full procedure for inferring *D*, *V*: model selection is critical, n_e , T_e have minimal effect.

Future directions to build on this work

- Streamline impurity transport analysis, deploy on cluster.
- Handle sawteeth properly.
- Reassess validation of impurity transport simulations.

"The Freidberg question" scorecard: $\bigcirc =8, \bigcirc =1, \bigcirc =3$