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Abstract

This thesis presents two new techniques for analyzing data from impurity transport
experiments in magnetically confined plasmas, with specific applications to the Alca-
tor C-Mod tokamak. The objective in developing these new techniques is to improve
the quality of the experimental results used to test simulations of turbulent transport:
better characterization of the uncertainty in the experimental results will yield a bet-
ter test of the simulations. Transport codes are highly sensitive to the gradients of the
background temperature and density profiles, so the first half of this thesis presents
a new approach to fitting tokamak profiles using nonstationary Gaussian process re-
gression. This powerful technique overcomes many of the shortcomings of previous
spline-based data smoothing techniques, and can even handle more complicated
cases such as line-integrated measurements, computation of second derivatives, and
2d fitting of spatially- and temporally-resolved measurements. The second half of
this thesis focusses on experimental measurements of impurity transport coefficients.
It is shown that there are considerable shortcomings in existing point estimates of
these quantities. Next, a linearized model of impurity transport data is constructed
and used to estimate diagnostic requirements for impurity transport measurements.
It is found that spatial resolution is more important than temporal resolution. Finally,
a fully Bayesian approach to inferring experimental impurity transport coefficient
profiles which overcomes the shortcomings of the previous approaches through use
of multimodal nested sampling is developed and benchmarked using synthetic data.
These tests reveal that uncertainties in the transport coefficient profiles previously
attributed to uncertainties in the temperature and density profiles are in fact en-
tirely explained by changes in the spline knot positions. Appendices are provided
describing the extensive work done to determine the derivatives of stationary and
nonstationary covariance kernels and the open source software developed as part of
this thesis work. The techniques developed here will enable more rigorous bench-
marking of turbulent transport simulations, with the ultimate goal of developing a
predictive capability.

Thesis Supervisor: Martin J. Greenwald
Senior Research Scientist and Deputy Director, Plasma Science and Fusion Center

Thesis Reader: Anne E. White
Cecil and Ida Green Associate Professor, Department of Nuclear Science and Engineering
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Notation
In this thesis, the following conventions are used:

• Scalars are written in roman italic font: a, A, α, Γ .

• Vectors are written in boldface roman italic font: a, A, α, Γ. Elements of
vectors are indicated with subscripts. Indices start from one, so a1, A1, α1, Γ1
are the first elements of the vectors indicated.

• Matrices are written in upright boldface sans serif font: a, A, α, Γ. Elements of
matrices are indicated with two subscripts. a1,2, A1,2, α1,2, Γ1,2 are the second
elements in the first row of the matrices indicated.

• Higher-dimensional arrays (mostly restricted to describing computer code)
are written in italic boldface sans serif font: a, A, α, Γ .

• Specific functions and operators are written in upright roman font: B(x, y) is
the beta function, Γ(z) is the gamma function. Generic functions are written
in roman italic font: y = f (x).

• To indicate that vector υ is real-valued and D-dimensional, the notation υ ∈
RD is used.

• To indicate that matrixM is real-valued andm×n, the slight abuse of notation
M ∈ Rm×n is used. This is believed to be more concise than the traditional
notation M ∈ Matm×n(R).

• Because the notation “log” means many things to people in different fields,
the notation “ln” is used for the natural logarithm.

• Because the variable ρ seems to mean something different to every single
plasma physicist, it is only ever used to refer to the Pearson correlation coef-
ficient or a generic coordinate.

• Source code is written in monospaced font.



1
Background

1.1 Nuclear fusion and impurity transport

The ultimate goal of nuclear fusion research is to develop a reactor which uses nuclear
fusion reactions for energy production [1]. The leading device working towards this
goal is the tokamak, a toroidal chamber surrounded with magnetic field coils which
hold the plasma away from the surrounding material surfaces [2]. While the plasma
of a reactor is intended to be primarily composed of some fuel such as a mixture of
deuterium and tritium, the contamination of the plasma by impurities is inevitable
for several reasons:

• All of the fuel cycles under consideration produce non-reacting “ash”: 4He in
the case of the D-T and D-3He fuel cycles and 1H in one branch of the D-D
fuel cycle.

• The confined plasma is surrounded by physical structures, and where the
boundary plasma impinges on these surfaces wall material is inevitably sput-
tered off and can then be transported into the hot core plasma.

• Impurities are sometimes purposefully seeded into the plasma both to help
spread out the heat flux coming out of the edge plasma onto the material
surfaces and to diagnose the conditions inside the plasma.

The transport of impurities plays a critical role in the objective of building a practical
fusion reactor [3–5]:

• The presence of impurities negatively impacts the power balance in two ways:
by diluting the fuel and by enhancing the power loss from both line radiation
and bremsstrahlung. The accumulation of too many impurities can cause the
radiated power to exceed the input power, in which case the plasma suffers a
radiative collapse.
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• The maintenance of a radiative mantle to spread out the heat flux coming out
of the plasma depends on the ability to keep the seeded impurities at the edge
where they are needed without excessively contaminating the core plasma.

These problems are exacerbated by the predicted and observed behavior that impuri-
ties experience an inwards pinch which scales with Z, meaning that heavy impurities
from the tokamak wall will accumulate in the center of the plasma where they will
have the most pernicious effect (see, for example, [6] for a comparison of experimen-
tal high-Z impurity transport and neoclassical predictions). In addition to assessing
the potential impact of impurities on future fusion devices (as well as developing
and testing ways to mitigate those issues), measurements of impurity transport are
very useful from a diagnostic perspective:

• Measurements of impurity transport provide an additional channel to test
simulations of turbulent transport against. Testing how the transport trends
with atomic mass and charge can provide a strong experimental test of theory.

• The transport properties of the main ion species can be difficult to measure
directly, and trace amounts of light impurities (helium, tritium) can provide a
proxy for diagnosing the main ion transport.

1.2 Verification, validation and uncertainty quantification
of turbulent transport simulations

The use of impurity transport as an additional channel to test transport simulations is
the main motivation of this thesis: the transport of particles, energy and momentum
in magnetically-confined plasmas is not fully described by the neoclassical theory
of collisional particle transport [7, 8]. Instead, it has been necessary to construct
increasingly complicated gyrokinetic models of plasma turbulence such as the gyro
code to attempt to explain plasma transport [9, 10]. While there has been progress
in recent years testing such codes against experimental measurements [11–30], the
state of the art is far from being reliable enough to extrapolate beyond existing exper-
imental conditions. This means that new devices must be designed using empirical
scaling laws such as those given in [3]. Building large experiments without a predic-
tive simulation capability is a risky proposition, and the pace of fusion development
could be accelerated if new concepts could be reliably tested in computer simulations
without having to make the considerable capital investment associated with building
a new device.

The structure of a generic simulation code is given in figure 1.1. The steps to
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simulation code
(gyro, etc.)

inputs
(T , 𝛁T , etc.)

parameters

outputs
(ñ, D, etc.)

Figure 1.1: Conceptual structure of a simulation code. The quantities which go into
the code are broken down into two categories: “inputs” are the physical conditions
the code is to simulate, such as a given temperature T and temperature gradient 𝛁T .
(For a flux-driven code the inputs would be the fluxes and sources.) “Parameters” are
the parameters of the underlying theoretical model which the code implements. A
theory which is derived from first principles may have no such parameters, whereas
a semi-empirical code may have many such parameters which have been estimated
from existing data and therefore have associated uncertainties. The simulation code
can then be used to produce outputs at many levels of detail such as the density
fluctuation spectrum ̃n and the diffusion coefficient D.

check that a simulation code is capable of explaining existing observations can be
broken down into three components, often collectively referred to by the acronym
vvuq [31–38]:

Verification Checking that the simulation has implemented the underlying theory
faithfully and that it solves the equations accurately.

Validation Checking the simulation against real data to make sure the theory (and
hence the verified code which implements the theory) describes reality.

Uncertainty quantification Assessing the uncertainties in the code to figure out
howmuch confidence there is in its results. There are two forms of uncertainty
to consider:

• The code may have numerical approximations (as in the case of dis-
cretization error), or the computation itself may be random (as in the
case of Monte Carlo sampling) or noisy (as in the case of simulations of
turbulent transport).

• The inputs or parameters of the code may have associated uncertainties.

Note that input uncertainties and parameter uncertainties have been grouped
together because they can be handled with similar techniques.
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The uncertainty quantification step is important but often overlooked: a code which
is strongly sensitive to its inputs can often be made to output a result close to the
experimental observations for some reasonable combination of inputs, but such a
comparison is not a strong statement on the validity of the code without an accom-
panying quantification of the range of possible outputs given the uncertainty in the
inputs. Much effort has been expended on efficient quantification of uncertainty
in codes, but comparatively little work has been done on refining the uncertainty
estimates for the experimental data used for validation. The key contributions of
this thesis are new techniques for handling experimental data which were developed
with the intent of improving the quality of data used for vvuq of turbulent trans-
port simulations. Chapter 2 covers profile fitting and the estimation of the profile
gradients which are a key input to all transport simulations and chapter 3 covers the
measurement of impurity transport.

1.3 Measuring impurity transport

This section reviews the techniques used tomeasure cross-field impurity transport in
tokamaks; the specific contributions of this thesis to this topic are given in chapter 3.
The mathematical details of impurity transport are discussed in details in section 3.2,
so only a brief introduction is given here. Impurity behavior is governed by the
radial continuity equation

∂nZ
∂t

= −1
r

∂
∂r

(rΓZ) + QZ , (1.1)

where nZ is the impurity density,1 ΓZ is the (radial) impurity flux and QZ is the
source/sink term. The flux is often described using a diffusive and convective com-
ponent:

ΓZ = −DZ
∂nZ
∂r

+ VZnZ , (1.2)

where DZ is the diffusion coefficient and VZ is the convective velocity. Collectively,
DZ and VZ are referred to as the “transport coefficients.” To date, most of the impu-
rity transport literature has attempted to summarize their observations in terms of
transport coefficients.

1. In this context, nZ may refer to either the density of a single charge state, or the total impurity density
which has been summed over all charge states. More details regarding this distinction are given in
section 3.2.
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Impurity transport has investigated in a wide variety of magnetic confinement
devices for many years: see table 1.1 for a partial review of the literature. In assem-
bling the table, preference was given to papers on tokamaks, though other magnetic
confinement devices were included because the diagnostic techniques are essentially
the same between tokamaks, stellarators/heliotrons, reversed-field pinches (rfp) and
spheromaks. Furthermore, preference was given to papers which discuss impurity
transport in terms of transport coefficients, mostly leaving out those papers which
only discuss phenomenology such as confinement times and profile shapes.

Table 1.1: Review of impurity transport research, broken down by machine.

Type Name Papers

Tokamak Aditya [39]
Alcator A [40, 41]
Alcator C [42, 43]
Alcator C-Mod [18, 19, 44–59]
asdex [60, 61]
asdex Upgrade [62–72]
atc [73, 74]
atf [75, 76]
cdx-u [77]
diii [78]
diii-d [79–85]
ft [86]
ftu [87–93]
hl-1m [94]
hl-2a [95–98]
ht-6b [99]
ht-7 [100]
isx [101]
jet [68, 71, 102–134]
jipp t-ii [135]
jipp t-iiu [136]
jt-60 [137]
jt-60u [138–144]
kstar [145]
mast [146–150]
nstx [151–161]

(Continues on the next page.)
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Table 1.1: (Continued from the previous page.) Reviewof impurity transport research.

Type Name Papers

pbx [162–164]
pdx [165, 166]
Phaedrus-T [167]
plt [168–172]
tcv [173–179]
TdeV [180–182]
text [80, 183–188]
textor [6, 189–194]
tfr [195–199]
tftr [200–211]
Tore Supra [212–225]
unitor [226]

Stellarator chs [227–229]
extrap-t2 [230]
extrap-t2r [231]
Heliotron E [232, 233]
lhd [229, 234–249]
tj-ii [250–257]
w7-a [258]
w7-as [188, 259–263]
w7-x [264]

rfp mst [265]
rfx [116, 214, 266–268]
rfx-mod [269, 270]

Spheromak s-1 [271]
sphex [272]

There are three critical aspects to measuring impurity transport:

1. The method used to inject impurities into the plasma.

2. The diagnostics used to track the impurities.

3. The method used to infer transport coefficients from the diagnostic measure-
ments.
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The following sections address the different options for each of these aspects.

1.3.1 Methods of impurity injection

There are multiple ways to inject impurities into the plasma, listed here roughly in
order of complexity:

Intrinsic impurities Any magnetically confined plasma will be contaminated with
material from the wall and residual gasses in the vacuum system. Note from
the continuity equation that, in steady-state,

∂nZ/∂r
nZ

=
VZ
DZ

, (1.3)

which means that measurements of steady-state profiles from continuous wall
erosion only give information on the ratio ofVZ andDZ : transient impurity in-
jections are needed to be able to uniquely measureDZ andVZ . These certainly
do happen, but there is no way of controlling when or how big the injection is.

Gas puff and supersonic molecular beam injection (smbi) [273] A plenum with
a fast valve provides away of transiently introducing a controlled amount of gas
into the plasma. Unfortunately, the length of the gas puff is often comparable
to the timescales of impurity transport, which makes inferring the transport
coefficients difficult. smbi is a gas injection technique originally designed for
plasma fueling which can overcome the shortcomings of conventional gas puff-
ing, and has been used for impurity transport studies on Tore Supra [220] and
hl-2a [97]. Continuous impurity gas puffing is often used for ion temperature
measurements and heat flux control, but as per the discussion above can only
be used to obtain the ratio VZ/DZ .

Laser blow-off (lbo) [74, 274] A laser is used to ablate material from a thin film
deposited on a slide held near the plasma. The source function is narrow
enough to approximate a delta function, which simplifies the analysis. Because
of the fine-grained control, fast injection rate and wide array of materials
which can be injected, this is one of the most widely-used impurity injection
techniques.

Pellet and tracer pellet (tespel) [275] Pellets have been widely used for plasma
fueling. Impurity injection can be accomplished either by using a very small
pellet made out of the desired material or by doping another pellet with the
desired impurity. This approach is used on the lhd heliotron to allow the
injected impurities to penetrate past the outer ergodic region.



32 Chapter 1. Background

A comparison of these techniques is given in table 1.2, and an experimental compari-
son of several techniques is given in [220].

1.3.2 Diagnostics

A wide variety of diagnostics can be used to measure the injected impurities. Most of
these are based on passively measuring the radiation from the impurities and can be
broadly divided into spectrally-resolved instruments which can isolate the emission
from single transitions of single charge states and broadband instruments which
integrate the radiation from over a broad spectral range, capturing spectral line radia-
tion, radiative recombination and bremsstrahlung emission. The spectrally-resolved
category includes grating spectrometers in the visible through x-ray range and lower-
resolution devices such as x-ray pulse height analyzers andmultiply-filtered soft x-ray
(sxr) photodiode arrays. The broadband category includes both sxr photodiode
arrays and foil bolometers. The signal on the broadband instruments requires consid-
erably more complicated atomic physics modeling to estimate the intensity reaching
the detector from all transitions and charge states. Furthermore, intrinsic impuri-
ties can also affect the broadband emission, so spectrally-resolved measurements
offer considerable advantages over broadband measurements. A key advantage of
broadband instruments like sxr photodiode arrays, however, is that the broader
wavelength range and simpler construction (both in the sense of not needing a small
entrance slit to obtain good spectral resolution and having fewer elements such as
gratings between the plasma and the detector) of such diagnostics permits a higher
signal level and higher spatial and temporal resolution. In a completely different
category of emissions connected to impurities, for the special case of tritium injected
into a deuterium plasma, the fusion neutron emissivity can be used to monitor the
tritium density [112, 122–125, 208–210].

All of these techniques integrate the intensity along a line sight, so some post-
processing is necessary to obtain the local impurity density. It is also possible to
actively interrogate the ion density of low-Z impurities using charge exchange recom-
bination spectroscopy (cxrs), which has the advantage of giving a localmeasurement
of the impurity density.

On most experiments multiple diagnostics will be available, and the inference
procedure used to find the transport coefficients must combine the data in a self-
consistent manner. A comparison of these diagnostics as applied to impurity trans-
port is given in table 1.3.



1.3. Measuring impurity transport 33

Table 1.2: Comparison of different injection methods.

Method Pros Cons

Intrinsic
• Always present, requires no

special apparatus.
• No control over injection tim-

ing and size.

• Limited selection of impuri-
ties.

• Steady-state conditions cannot
uniquely determine DZ and
VZ .

Gas puff
• Plenum/valve system is mul-

tipurpose, available on most
machines.

• Easy to use gas mixtures in
order to measure multiple
impurities at once [130].

• Slow source function makes
interpretation difficult.

• Can only inject gasses.

• Many gasses recycle which fur-
ther complicates the analysis.

Laser blow-off
• Rapid (near-delta function)

source function.

• Fine control over injection
size.

• Can use a wide variety of mate-
rials, including medium- and
high-Z metals.

• Difficult and expensive to
fabricate slides, particularly
with multiple impurity species.

• Injection is impulsive: can-
not produce a steady/slowly
modulated impurity source.

Pellet
• Can deliver impurities to the

core plasma.

• Can use a wide variety of mate-
rials.

• Difficult to make pellets
small enough to be non-
perturbative.

• Analysis complicated by need
to model pellet ablation.

• Injection is impulsive: can-
not produce a steady/slowly
modulated impurity source.
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Table 1.3: Comparison of different diagnostics for impurity transport measure-
ments.

Diagnostic Pros Cons

Spectrally-resolved
• Simpler atomic physics.

• Can separate signals from
injected versus intrinsic impuri-
ties.

• Often has lower spatial and
temporal resolution than
broadband diagnostics.

• Lower signal levels compared
to broadband diagnostics.

• Line-integrated.

Broadband
• Can have very high spatial and

temporal resolution.

• Higher signal levels compared
to spectrally-resolved diagnos-
tics.

• Much more complicated
atomic physics.

• Cannot discriminate between
the intentional injection and
intrinsic impurities.

• Line-integrated.

Charge exchange
• Local.

• Insensitive to intrinsic impuri-
ties.

• Requires a neutral beam.

• Often has lower spatial and
temporal resolution than
broadband diagnostics.

• Not usable for high-Z impuri-
ties.
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1.3.3 Inference methods

The key part of the process of measuring impurity transport is to actually infer the
transport coefficient profiles from the data. Depending on the specific details of the
experiment at hand, there are several ways to do this. By far the most common ap-
proach is to use an impurity transport code combined with the appropriate synthetic
diagnostic(s) to construct a forwardmodel which predicts what the diagnostic signals
would be given some specific profiles of DZ and VZ . Then, some sort of fitting proce-
dure can be used to determine theDZ and VZ profiles which best reproduce the data.
A simulation-based approach is needed because there is no closed-form solution to
the impurity continuity equation for arbitrary DZ , VZ profiles and source function,
though there have been some attempts to construct Green’s functions for simple DZ ,
VZ profiles [186]. The most common codes for this application are strahl [276]
and utc-sanco [107, 122, 123], with mist [277] having been widely used in the older
literature. The forward model approach has the advantage of providing complete
flexibility whenmodeling any combination of diagnostics, and can even handle cases
where the transport coefficients may be changing in time, such as in discharges with
sawteeth.

As will be discussed in chapter 3, this process requires extreme care to deliver
useful results. Specifically, finding the best-fitting transport coefficients is a very dif-
ficult optimization problem with the potential for local minima and wide regions of
poor fit with low gradients where the optimizer can get stuck. Even once the optimal
solution(s) has been found, estimating the uncertainty in this solution is a difficult
prospect given that high roundoff error in the forward model calls the use of finite
differences to compute sensitivities into question. Furthermore, the fitting procedure
requires a specific choice be made for the functional form for theDZ and VZ profiles.
A poor choice can end up over-constraining the fitting process and preventing a
reasonable solution from being found, but the procedure as implemented in the past
provides no warning that this may be the case. Chapter 3 presents a new forward
model-based methodology which attempts to overcome these issues.

When high-resolution local impurity density measurements are available, the
flux-gradient method may be employed. Consider the impurity continuity equation
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in a region where the source/sink function is zero:

∂nZ
∂t

= −1
r

∂
∂r

(rΓZ) (1.4)

ΓZ = −1
r ∫

r

0

∂nZ
∂t

r′ dr′ = −DZ
∂nZ
∂r

+ VZnZ (1.5)

ΓZ
nZ

= −DZ
∂nZ/∂r
nZ

+ VZ . (1.6)

Therefore, if the impurity density nZ has been measured with high enough spatial
and temporal resolution to reconstruct local values of both the flux ΓZ ∝ ∂nZ/∂t and
inverse gradient scale length ∂nZ/∂r/nZ at a point, the transport coefficients DZ and
VZ can be determined from a simple linear fit to the data obtained during the influx
and decay of the impurity injection. A comparison of the flux-gradient and forward
model approaches is given in [148, 149].

In addition to the very high temporal and spatial resolution needed to deter-
mine ∂nZ/∂t and ∂nZ/∂r, a key shortcoming of the flux-gradient approach is that
equation (1.5) is only valid in regions where the source/sink function is zero. If
measurements of the total impurity density (i.e., summed over all charge states) are
available, it is reasonable to expect that this will hold true in most of the core of the
plasma as the source/sink is localized to the edge. In the more common case that
only a specific charge state has been measured (e.g., by an imaging spectrometer or
cxrs), however, the source/sink term consists of ionization and recombination to
adjacent charge states and can end up being non-negligible throughout the plasma.
To handle this effect requires knowledge of the charge state distribution, which is
itself a function of the transport coefficients. This is exacerbated when using broad-
band measurements such as sxr photodiode arrays because the signal observed is
a complicated function of the distribution of all charge states. This has been over-
come in some cases by alternating between using an impurity transport code to form
estimates of the transport-dependent charge state distributions and accompanying
sxr power loss coefficients and then using these estimates to infer local values of
the transport coefficients [70, 72]. In order to overcome some of the difficulties of
both the forward model and flux-gradient approaches, one approach is to use the
flux-gradient results as initial guesses for the forward model, as was done in [113].

In long, stationary discharges harmonic analysis of gas puff modulation may be
used [61, 139]. This technique is also relevant to the measurement of main ion and
electron transport [278–280]. Harmonic analysis exploits the relationship between
a modulated source function (typically accomplished by sinusoidally varying the
gas puff rate) and the Fourier transform of the local impurity density measurements.
Provided sufficiently precise measurements and a sufficiently long discharge, this
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allows the reconstruction of the local transport coefficients. This method has similar
requirements as the flux-gradient approach: the transport coefficients must be con-
stant in time and the analysis requires assumptions be made regarding the charge
state distribution. A comparison of the forward model, flux-gradient and harmonic
analysis techniques is given in table 1.4, and some additional discussion is given in
[281].

1.4 Notation and terminology from probability theory and
Bayesian inference

1.4.1 Random variables, probability densities and Bayes’ rule

This section presents a basic review of the key terminology of probability theory,
statistics and Bayesian inference. There are many excellent books and review papers
on this topic including [282–286], so this section is purposefully brief and focusses
solely on what is needed to understand the statistical content of this thesis.

Consider a random variable X which may take on specific values x according
to some probability law. Here, we are careful to distinguish between the random
variable X and its specific value x, consistent with the notation of [284]. In later
chapters this distinction is relaxed when the intent is clear from context.

A probability density function (pdf) describes the probability of a random/uncer-
tain quantity taking a given value. Specifically, the probability that random variable
X with pdf fX(x) lies between a and b is

P(a < X < b) = ∫
b

a
fX(x) dx. (1.7)

Because fX(x) is a “density,” the term probability mass is often used to describe the
result of integrating the pdf over some region. A probability distribution may also
be described by its cumulative density function (cdf):

FX(x) = P(X ≤ x) = ∫
x

−∞
fX(u) du. (1.8)

Clearly, fX(x) = dFX(x)/dx. The cdf is monotonic and has range [0, 1], which also
makes it useful for some non-statistical applications. If F−1

X (y) exists (i.e., FX(x)
is monotonic and one-to-one) then, given a uniformly-distributed variable u ∼
𝒰 (0, 1), x = F−1

X (u) is distributed according to fX(x). As (pseudo)random samples
from the uniform distribution can be obtained through many well-established algo-
rithms, this gives a convenient way of producing samples from any distribution for
which F−1

X (u) can be computed [287–292].
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Table 1.4: Comparison of different methods of inferring transport coefficients.

Method Pros Cons

Forward model
• Can handle arbitrary source

functions.

• Can handle temporal variation
of transport coefficients.

• Can work with any combina-
tion of diagnostics and injec-
tion methods.

• Very difficult optimization
problem.

• Choice of basis functions can
have strong influence on an-
swer.

Flux-gradient
• Allows reconstruction of local

transport coefficients without
assuming a functional form for
DZ and VZ .

• Simple analysis to go from
fluxes/gradients to transport
coefficients.

• High spatial and temporal
resolution needed to be able to
measure fluxes and gradients.

• Only valid in source-free re-
gions: most diagnostic situa-
tions require iteration with
impurity transport code to
handle transport dependence
of charge state distribution.

• Requires transport coefficients
be constant in time.

Harmonic analysis
• Collecting data over a long

time period enables very low
perturbation of the plasma.

• Generally only applicable to
gas puffs. (Other modulated
sources could be used, but
would require complicated
analysis to handle the higher
harmonics associated with non-
sinusoidal source functions.)

• Requires very long stationary
discharge.

• Requires transport coefficients
be constant in time.
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A joint pdf describes the probability that multiple variables lie in a given re-
gion. For instance, given random quantities X and Y with joint pdf fX,Y (x, y), the
probability that a < X < b and c < Y < d is

P(a < X < b ∧ c < Y < d) = ∫
b

a ∫
d

c
fX,Y (x, y) dy dx. (1.9)

It is clear that fX,Y (x, y) = fY ,X(y, x). Themarginal pdf ofX is the result of integrating
the joint pdf over all possible values of Y :

fX(x) = ∫
∞

−∞
fX,Y (x, y) dy. (1.10)

The conditional pdf of X given a specific observed value for Y is

fX|Y (x|y) =
fX,Y (x, y)
fY (y)

. (1.11)

Rearranging, the joint distribution can then be written as

fX,Y (x, y) = fX|Y (x|y)fY (y). (1.12)

But, a similar expression can be obtained starting from the conditional distribution
for Y given an observation of X:

fX,Y (x, y) = fY|X(y|x)fX(x). (1.13)

Equating equation (1.12) and equation (1.13) and rearranging gives Bayes’ rule:

fY|X(y|x) =
fX|Y (x|y)fY (y)

fX(x)
. (1.14)

This is the fundamental equation of Bayesian inference: it lets you infer the value
of Y given observations of X. For instance, Y might be the parameter of a model
and X might be observations of the data to which the model is to be fit. In the
context of inference, each of the terms in Bayes’ rule has a specific interpretation
and corresponding name:

• fX|Y (x|y) is called the likelihood. This is the probability that the observed value
of X will be observed given some value of the parameter Y . In the context of
inference, the data are taken to be given and the parameter is what is to be
determined, so this is often written as a function of y: fX|Y (x|y) = L(y).
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• fY (y) is called the prior distribution (or prior). This distribution represents any
information that happens to be available about Y before the observations X
are included. In the context of the profile fitting task discussed in chapter 2,
the prior distribution for the covariance length scale is chosen to represent
the assumption that tokamak profiles are macroscopically smooth.

• fX(x) is called the evidence. In the context of inference it simply acts as a
normalization constant. In the context of model selection it represents the
probability of observing the data given the specific model of which Y is a
parameter, and can be used to compare different models with different sets of
parameters.

• fY|X(y|x) is called the posterior distribution (or posterior). This is the desired
result of the inference: the probability distribution for the parameter Y given
the observation of X.

Equation (1.14) shows that the inference (i.e., the posterior distribution of Y given
X) is the result combining the information in the likelihood (which is dictated by
the data X) and the prior distribution (which represents any knowledge about Y
before the data have been considered). If a large quantity of high-quality data is
available the likelihood will be strongly peaked and overwhelm the influence of the
prior distribution. In the presence of sparse, noisy data the influence of the prior
distribution can play a critical role in keeping the inference from being unphysical.

1.4.2 Summary statistics

A pdf contains all of the information there is to know about a random variable (or,
in the case of a joint pdf, a collection of random variables). But this is often more
information than is necessary. Various summary statistics are in common use to
summarize the details of a pdf. This section defines the ones used in this thesis (as
well as alternate forms often encountered in the literature), and the next section dis-
cusses how to compute them for sampled data. In all cases, the notation for a given
summary statistic may have a subscript added to indicate which variable it refers to
when it is not clear from context. In other words, μ is the general notation for the
mean and μX refers to the mean of random variable X when this is not clear from
context. Furthermore, a conditional summary statistic is indicated in a similar man-
ner to conditional probability distributions: μX|Y = E[X|Y] = ∫∞

−∞ xfX|Y (x|y) dx is
the (conditional) mean of X given Y = y.
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The mode m is the value with the highest probability:

m = arg max
x

fX(x). (1.15)

A distribution for which there are multiple local maxima in the pdf is said to be
multimodal. The medianM = M[X] is the point which bisects the pdf:

P(X ≤ M[X]) = P(X ≥ M[X]) = 1
2

. (1.16)

The mean μ = E[X] is the centroid of the pdf:

μ = E[X] = ∫
∞

−∞
xfX(x) dx. (1.17)

The variance σ2 = var[X] represents the width of the pdf:

σ2 = var[X] = E [(X − μ)2] = ∫
∞

−∞
(x − μ)2fX(x) dx. (1.18)

The variance has units of X2, so the standard deviation σ ≡ √σ2 is more useful for
communicating the width of the pdf. The covariance σXY = cov[X,Y] represents
the extent to which two variables vary together:

σXY = cov[X,Y] = E [(X − E[X])(Y − E[Y])]. (1.19)

Note that σXX = var[X] = σ2X , a potentially confusing side-effect of this notation.
The covariance matrix ΣXY = cov[X,Y] ∈ Rm×n between two random vectors
X ∈ Rm, Y ∈ Rn is the result of evaluating the covariance between all pairs of values
in X and Y :

ΣXY = cov[X,Y] (1.20)
Σij = cov[Xi,Yj]. (1.21)

Sometimes the covariance is expressed instead in terms of the (Pearson) correlation
coefficient ρXY = corr[X,Y]:

ρXY = corr[X,Y] =
σXY
σXσY

. (1.22)

The correlation matrix CXY = corr[X,Y] ∈ Rm×n between two random vectors
X ∈ R is then obtained from

Cij = corr[Xi,Yj] =
cov[Xi,Yj]
σXi

σYj

. (1.23)
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The median can also be referred to as the second quartile Q2 of the pdf. The first
quartile Q1 is the point such that

P(X ≤ Q1) = 1
4

. (1.24)

The third quartile Q3 is the point such that

P(X ≤ Q3) = 3
4

. (1.25)

The interquartile range iqr = Q3 − Q1 is one way of representing the width of the
pdf. To represent the range that a random variable is expected to lie within, the 95%
interval [l, u] is used. This is the interval containing 95% of the probability mass:

P(l ≤ X ≤ u) = 0.95. (1.26)

The simplest way of obtaining l and u is the equal-tailed interval:

P(X ≤ l) = P(X ≥ u) = 1 − 0.95
2

= 0.025. (1.27)

This has the disadvantage that it may end up excluding the mode of very skew
distributions (such as the exponential distribution, where themode is at the left-hand
edge of the pdf’s support) and could include large portions with small probability
density for multimodal distributions. As such, some authors [286] recommend
using the 95% highest density region: the set of values which encompass 95% of the
probability mass and for which the density in the region is never lower than outside
the region. Note that this may end up consisting of multiple disconnected intervals
if the pdf is multimodal. Because of this complexity, the equal-tailed interval is used
throughout this thesis; this is why 95% posterior intervals for parameter estimates
sometimes do not include the posterior mode. Note that the interquartile range is
the width of the 50% equal-tailed interval.

1.4.3 Sample statistics

1.4.3.1 Definitions

This section considers how to estimate the summary statistics discussed above when
some set of N observations {x(i)}Ni=1 has been collected. The notation x(i) to refer to
the ith sample is used to avoid confusion with the notation xi for the i

th component of
vector x. The pdf can be approximated by forming the histogram of the data: the grid
on which the data were taken is divided into k bins, and the number of samples lying
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within a given bin is tallied up to give the (unnormalized) value of the histogram in
that bin. The sample mode is then the bin with the highest tally. The sample median
is obtained by sorting the data and finding the point in the middle. (For an even
number of samples, the mean of the middle two values is used.) The sample first
quartile, sample third quartile, sample 2.5% percentile and sample 97.5% percentile can
be obtained in a similar manner, which then allows the sample interquartile range
and sample 95% equal-tailed interval to be computed. The sample mean is given by

x = 1
N

N

∑
i=1

x(i). (1.28)

The sample variance is given by

s2 = 1
N − 1

N

∑
i=1

(x(i) − x)2, (1.29)

where the factor in front2 is 1/(N −1) and not 1/N to account for the bias introduced
by using the data to compute x. The sample standard deviation is then simply s = √s2.
The sample covariance between samples {x(i)}Ni=1, {y

(i)}Ni=1 of scalar random variables
X, Y is

sXY = 1
N − 1

N

∑
i=1

(x(i) − x)(y(i) − y), (1.30)

and the sample covariance matrix for samples {x(i)}Ni=1, {y(i)}Ni=1 of vector random
variables X, Y is

S = 1
N − 1

N

∑
i=1

(x(i) − x)(y(i) − y)T (1.31)

Sjk = 1
N − 1

N

∑
i=1

(x(i)
j − xj)(y

(i)
k − yk). (1.32)

1.4.3.2 Robust versus non-robust estimators

Note that the samplemean and sample variance can both bemade arbitrarily large by
just a single outlying sample x(i) which is far from the other points. This means that
the sample mean and sample variance are non-robust estimators. Outliers may be

2. This can also be seen as the result of assuming a specific prior distribution for σ2 and applying Bayes’
rule to condition on the data [283].
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present as a result of diagnostic malfunctions or other events which are not included
in the probability model. In order to account for this possibility without having
to manually remove such outliers (a statistically questionable process), it is useful
to use robust estimators which require a significant fraction of the data to be bad
before they break down. The sample median and sample interquartile range are
useful robust replacements for the sample mean and sample standard deviation,
respectively. The software developed as part of this thesis supports a wide variety of
schemes for averaging data which are described in detail in section f.5.

1.4.4 The uncertainty propagation equation

Given a quantity y = y(x1, x2, … ) which is computed as a function of other uncer-
tain values x1, x2, … , the variance in y can be approximated using the uncertainty
propagation equation [282]:

σ2y = σ2x1 (
∂y
∂x1)

2
+ σ2x2 (

∂y
∂x2)

2
+ ⋯ + 2σx1x2 (

∂y
∂x1) (

∂y
∂x2) + … . (1.33)

This is based on a linearization of the function y and hence should not be expected
to be reliable for highly nonlinear functions. That being said, it seemed to perform
adequately for all of the cases encountered in this thesis.

1.4.5 Useful probability distributions

This section gives the explicit forms of the probability distributions in this thesis.
Most of this information comes from table a.1 of [286].

1.4.5.1 The uniform distribution

The (continuous) uniform distribution is a univariate probability distribution which
is constant within its support [a, b]. The pdf is

fX(x) = 𝒰 (x; a, b) =
{

1/(b − a), a ≤ x ≤ b
0, otherwise

. (1.34)

This distribution represents the maximum state of ignorance when it is only known
that a random variable lies within a given interval [a, b]. Some relevant features of
the uniform distribution are

μ = b − a
2

, σ2 = (b − a)2

12
. (1.35)
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1.4.5.2 The normal distribution

The (univariate) normal or Gaussian distribution is a symmetric univariate probabil-
ity distribution which has support (−∞, ∞). The pdf is

fX(x) = 𝒩 (x; μ, σ2) = 1
σ√2π

exp (−
(x − μ)2

2σ2 ) , (1.36)

where μ = m = M is the mean (and mode and median) and σ is the standard
deviation. The interquartile range of the normal distribution is

iqr = F−1
X (0.75) − F−1

X (0.25) = σ(Φ−1(0.75) − Φ−1(0.25)) ≈ 1.349σ, (1.37)

where Φ−1(x) is the inverse cdf of the standard normal 𝒩 (0, 1), also known as the
probit function. Therefore, the robust estimator for the interquartile range can be
used to construct an estimate of the standard deviation, assuming that the underlying
distribution is in fact normal. This distribution represents the maximum state of
ignorance when only the mean and variance of a random variable are known.

1.4.5.3 The log-normal distribution

The log-normal distribution describes a variable whose logarithm is normally dis-
tributed and therefore has support [0, ∞). The pdf is3

lnX ∼ 𝒩 (μ, σ2) (1.38)

fX(x) = ln 𝒩 (x; μ, σ2) = 1
xσ√2π

exp (−
(ln x − μ)2

2σ2 ) . (1.39)

Because of how SciPy [293] implements this pdf, it is most convenient to express
this in terms of the median of x: M = M[X] = eμ:

fX(x) = ln 𝒩 (x; μ, σ2) = 1
xσ√2π

exp
(

−( ln(x/M))
2

2σ2 )
. (1.40)

Some relevant features of the log-normal distribution are

E[X] = exp (μ + σ2

2 ) , var[X] = e2μ+σ2(eσ
2

− 1) (1.41)

m = eμ−σ2, M = eμ. (1.42)
3. Notice an unfortunate side effect of the conventional notation: ln 𝒩 (x; μ, σ2) would seem to imply

that the natural logarithm of the normal pdf is taken, when in fact it refers to the function given in
equation (1.39).
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1.4.5.4 The gamma and exponential distributions

The gamma distribution is a univariate probability distribution which has support
[0, ∞). This distribution’s pdf is often expressed in one of several different forms,
the one used in this thesis is

fX(x; α, β) = Gamma(x; α, β) =
βα

Γ(α)
xα−1e−βx, (1.43)

where α > 0 is the “shape” parameter, β > 0 is the “rate” parameter and Γ(α) is
the gamma function [294, 295]. By varying these two parameters, a wide variety of
shapes can be obtained. The exponential distribution is a special case of the gamma
distribution:

fX(x; β) = Exp(x; β) = Gamma(x; 1, β) = βe−βx. (1.44)

Some relevant features of the gamma distribution are

μ = α
β

, σ2 = α
β2

, m = α − 1
β

(for α ≥ 1). (1.45)

For α < 1, the pdf goes to infinity as x → 0 so the mode is undefined.
While the gamma distribution is very useful because it ensures a variable is

always positive and its two parameters let a wide variety of shapes be obtained,
it is somewhat cumbersome to connect physical insights about the typical values
a parameter assumes to specific values for α and β. In order to obtain a simpler
parameterization which is valid for α ≥ 1, substitute α = σ2β2 into the expression
for the mode to obtain

m =
σ2β2 − 1

β
(1.46)

σ2β2 − mβ − 1 = 0 (1.47)

β =
m ± √m2 + 4σ2

2σ2
=

m + √m2 + 4σ2

2σ2
(1.48)

α = mβ + 1, (1.49)

where the positive root was chosen to satisfy β > 0. Therefore, the gamma distribu-
tion with α ≥ 1 can be specified in terms of m and σ .

1.4.5.5 The multivariate normal distribution

The multivariate normal distribution (mvn) is a very useful multivariate probability
distribution [296–298]. To indicate a randomvectorX ∈ Rm follows themultivariate
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normal distribution with mean μ = E[X] and (positive definite) covariance matrix
Σ = cov[X,X], the notation X ∼ 𝒩 (μ,Σ) is used. The pdf is

fX(x) = 𝒩 (x; μ,Σ) = 1
(2π)m/2 |Σ|1/2 exp (−1

2
(x − μ)TΣ−1(x − μ)) . (1.50)

Marginal distributions are simply obtained by taking the appropriate “slices” from μ
and Σ: given random vectors X ∈ Rm, Y ∈ Rn with joint pdf

fX,Y (x, y) = 𝒩 ([
μX
μY] , [

ΣX ΣXY
ΣYX ΣY ]) , (1.51)

where ΣXY = ΣTYX = cov[X,Y], the marginal distribution for X is simply

fX(x) = 𝒩 (μX ,ΣX). (1.52)

The conditional distribution is rather more complicated, but is given in a very useful
form in [297]:

fX|Y (x|y) = 𝒩 (μX + ΣXYΣ
−1
Y (Y − μY ),ΣX − ΣXYΣ

−1
Y ΣYX) . (1.53)



2
Profile fitting with Gaussian
process regression

2.1 Introduction

As discussed in section 1.2, the primary motivation of this thesis is to improve
the quality of data used for the validation of transport simulations. The level of
turbulence is highly sensitive to the gradients in the temperature and density pro-
files, which means these are very important inputs to most codes. Having reliable
estimates of the temperature and density profiles is still important when testing
flux-driven codes which take fluxes as inputs and output temperature and density
profiles, as the uncertainties in the profiles must be known in order to compare the
outputs to the experimental observations. A key contribution of this thesis is the
extensive development of procedures and software for fitting tokamak profiles with
Gaussian process regression (gpr) [286, 297, 299–304]. This technique provides
rigorous uncertainty estimates on the profiles and their gradients, and allows the fit
to be performed automatically without the type of bias which can be introduced by
manual intervention.

Some of this work was published in [305], from which much of this chapter
is drawn. The extensive work which was performed on stationary and nonstation-
ary covariance kernels and their derivatives is described in appendix b. The actual
software developed for gpr (gptools) is described in appendix e and [306, 307].
The software to simplify analysis of Alcator C-Mod profiles (profiletools) is de-
scribed in appendix f and [308, 309]. Supporting material from this chapter which
distracts from the main discussion but gives additional details on the results is given
in appendix a.

A situation which is ubiquitous in plasma physics and many other fields is that a
quantity of interest is computed by a complicated, computationally expensive code
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whose inputs are not single values but rather entire profiles of quantities given as
functions of space, time and possibly other independent variables. In plasma physics,
examples of these derived quantities include heat fluxes and particle diffusivities.
As many quantities of interest and processes such as transport depend strongly on
the gradient of a measured profile (and hence depend strongly on the fine details of
the fitted curve), it is critical that the process of taking noisy, discrete observations
and turning them into a smooth curve be done in a rigorous, statistically principled
way. This is particularly true in the context of validation of gyrokinetic codes [14]:
if a statistically meaningful comparison between the code and experiment is to be
performed, then the high sensitivity of turbulent transport to profile gradients means
that experimental data must be analyzed very carefully to deliver valid uncertainty
estimates for the gradient scale lengths, as well as other derived experimental quanti-
ties to be compared, such as heat and particle fluxes. Furthermore, for the results
of the analysis to be complete they must include an estimate of their uncertainty, so
it is desirable that the fit be performed in a way that enables the uncertainty to be
propagated through the model with a minimal number of code runs. Splines [310,
311], the traditional tool for this profile fitting and sampling task, have a number of
shortcomings with respect to these objectives that will be discussed in section 2.2.2.
It will be shown that improvements in the quality of results, rate of convergence
and level of automation of the data analysis workflow can be obtained by instead
fitting profiles and producing samples using gpr. Because of these advantages, there
has been considerable interest in the use of Gaussian processes in plasma physics
which has grown over the time that this thesis work was conducted. Papers using
Gaussian processes in plasma physics contexts include [305, 312–318]. As a profile
fitting approach, gpr is very general, and can be applied in any situation where it is
necessary to fit a smooth curve to noisy, discrete observations – even if the profile is
a function of many independent variables. The sampling workflow presented in this
chapter is also quite general, and can be applied to any code that takes entire profiles
as inputs.

The rest of this chapter is organized as follows: section 2.2 discusses uncertainty
quantification, profile fitting with splines and the need for advanced profile fitting
techniques. Section 2.3 gives the mathematical details of gpr starting from a very ba-
sic example and building to cover all of the key steps in the analysis, including some
extensions which were made to handle line-integrated (or otherwise transformed)
quantities in the inference. Section 2.4 applies gpr to synthetic data in order to verify
that gpr produces reasonable, consistent results. This section includes a comparison
of various covariance kernels, including several novel approaches to handling the
nonstationarity intrinsic to tokamak profiles. Section 2.5 applies gpr to real Alcator
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C-Mod data. This includes basic fits to L-mode ne and Te profiles (section 2.5.1), a
fit to an I-mode ne profile which incorporates line-integrated tci data (section 2.5.2),
fits to L-mode ne and Te profiles which include predictions of second derivatives
in order to test theories regarding momentum transport and rotation reversals (sec-
tion 2.5.3), a 2d fit (in space and time) to the Te profile of a sawtooth-free, lower
hybrid-driven discharge (section 2.5.4), and a fit to an H-mode ne profile using the
popular mtanh function as the Gaussian process’ mean function (section 2.5.5). In
section 2.6 gpr is used in an analysis workflow built around the strahl code [18, 19,
55, 276] to obtain experimental estimates of impurity transport coefficients D and
V from measurements of impurity brightness, electron temperature and electron
density profiles. This measurement is of interest as impurity transport is critical in
determining the power balance of a confined plasma [2], and acts as an additional
channel for comparison when testing transport codes [18, 19]. As will be shown
in chapter 3, however, this simplistic impurity transport analysis has a number of
shortcomings and should only be taken as an illustration of the potential use of gpr
to propagate uncertainties through a more complicated model rather than a rigorous
result. Finally, section 2.7 summarizes the key results of this work.

2.2 Uncertainty quantification and the need for advanced
profile fitting

2.2.1 Uncertainty quantification with profile inputs

The situation this thesis is concerned with is shown schematically in figure 2.1: a
code takes as inputs one or more profiles and computes one or more output quanti-
ties from these profiles. Furthermore, even if the required input is the local value
of a gradient, the entire profile must still be analyzed to obtain this result from the
discrete experimental measurements of the profile. In order to fully specify the result
of the code it is necessary to compute not just a point estimate of the output but also
to provide an estimate of the uncertainty in the output and its sensitivity to the input
parameters. This task is most often accomplished with techniques such as Monte
Carlo sampling: a series of input samples is prepared by randomly perturbing the
input profiles according to their respective uncertainty estimates. These samples are
then run through the code to produce an ensemble of possible realizations of the
outputs. Computing the relevant summary statistics of this ensemble then gives the
estimate of the value and its uncertainty. This workflow is shown schematically in
figure 2.2. To carry this workflow out in practice when the inputs are noisy, discrete
observations it is necessary to have a fitting procedure which takes the observations
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analysis/simulation code
(strahl, transp, etc.)

Ti(R, t)

Te(R, t)

ne(R, t)

D(R, t)

w(R, t)

V(R, t)

Figure 2.1: Typical analysis scheme: the analysis code requires complete profiles of
quantities that are only measured at discrete points in space and time. The outputs
can in general also be functions of space and time. Here, w refers to an arbitrary
profile output from the code. Transport coefficients D and V are explicitly specified
as outputs as they are the quantities of interest for the analysis in both this chapter
and chapter 3. This figure is an updated version of one which originally appeared
in [305].

and produces an estimate of the underlying smooth curve (and potentially its deriva-
tives) and the accompanying uncertainty in a way that perturbed samples can be
extracted.

Furthermore, models for turbulence-induced transport are highly sensitive to
the gradient scale lengths, given here as the normalized (against the minor radius a)
inverse scale length for Te (but which could in general be for Te, Ti, ne, etc.):

a
LTe

= a |𝛁Te|
Te

≈ a |∂Te/∂R|
Te

, (2.1)

whereR refers to themapped outboardmidplanemajor radius. Because this depends
on the derivative ∂/∂R, it is inevitably highly sensitive to the fine details of the profile.
Superficially similar profiles can have comparable goodness-of-fit, but wildly dif-
ferent gradients. This sensitivity means it is essential to fit the discrete observations
using a mathematically principled procedure, avoiding the temptation to pick the
properties of the smoothing curve “by eye.”

2.2.2 Profile fitting with splines

A very common approach at present is to use a spline to fit a smooth curve to
experimental data ([319] and the references therein give a mathematical perspective
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w ± σw

w1 wN

simulate simulate

Te + δTe,1 Te + δTe,N⋯

⋯

⋯

compute μ, σ

Figure 2.2: Overview of sampling based (“Monte Carlo”) uncertainty propagation.
The fitted profile Te is perturbed N times by random (or otherwise intelligently
selected [291]) amounts δTe. This produces N possible realizations of the output
quantity w. The relevant summary statistics are computed from this ensemble to
give the final estimate of the quantity and its uncertainty. N must be selected such
that these estimates are sufficiently accurate. This figure is an updated version of
one which originally appeared in [305].

with some connections to plasma physics, [320] shows a more recent application
including gradient scale lengths). Splines have the advantage of being thoroughly
explored in a large body of literature and routines for performing spline fitting
are readily available in most programming languages commonly used for scientific
data analysis. There is, however, a number of drawbacks with splines that the use
of gpr bypasses. In order to highlight the advantages of gpr, a brief outline of the
mathematical properties of splines is given in section 2.2.2.1, followed by a discussion
of their shortcomings in section 2.2.2.2.

2.2.2.1 Mathematical details of splines

The mathematical details of splines are discussed in detail in [310, 311, 321, 322] and
the references therein. These references form the basis for this section, with other
references given as needed. A (univariate) spline is a piecewise polynomial of degree
d which has continuous derivatives up to order d − 1. Discontinuities in the dth

derivative are allowed to exist at a finite number of locations referred to as “knots.”
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An interpolating spline is the curve satisfying these properties that is further required
to pass through specified values at each of the knots. But, given noisy data, forcing
the curve to go through all of the observations will inevitably result in a curve with
too much unphysical structure. There are two general approaches to produce a curve
that smoothes rather than interpolates the data. A smoothing spline is the spline of
degree d = 2m − 1 with knots located at each of the observations that minimizes

1
n

n

∑
i=1

(yi − f (xi))
2 + λ∫

b

a
(f (m)(x))

2 dx, (2.2)

where yi is the observed value at location xi (where i ∈ {1, 2, … , n}), f (x) is the
spline function and λ > 0 is the smoothing parameter. This expression represents a
tradeoff between the mean square error (first term) and the complexity of the curve
(second term). The smoothing parameter sets the priority of this tradeoff: for small
λ complex curves that lie close to the data are preferred, whereas large λ will drive
the solution to smoother curves that are allowed to lie farther away from the data
points. The other approach is to use a reduced set of knots and minimize the sum of
squared residuals

1
n

n

∑
i=1

(yi − f (xi))
2 (2.3)

directly. In this case, the number of knots acts as the smoothing parameter and
repositioning the knots allows the fit to have more or less spatial structure in some
regions compared to others. This type of smoothing can be seen as a sum over
piecewise polynomial basis functions Sj with weights Cj:

f (x) = ∑
j
CjSj(x). (2.4)

The B-spline basis functions are a particularly popular choice on account of their
favorable computational and mathematical properties [321, 322]. With this approach
the knot positions can be used as an additional parameter to help better fit the data,
a situation referred to as a free-knot spline [323].

2.2.2.2 Difficulties with spline fitting

With splines, selection of how flexible/complex the curve should be is a difficult
problem. Lee [324] presents and compares a number of approaches for performing
this operation, but the general theme is that this is a rather involved process, with
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Dierckx [311] admitting that the positioning of knots often becomes a matter of (man-
ual) trial and error. Holland [14] comments on manual choice of spline properties as
a potentially substantial source of systematic error in tokamak profile fits. Free-knot
splines additionally suffer from the so-called “lethargy property” which means that
there will be many local minima to contend with when optimizing the knot positions
[323, 325]. As will be seen, the approach adopted here selects the properties of the
fitted curve using basic statistical procedures.

A further problem arises when attempting to fit data which depend on more
than one independent variable. The most common choice when using splines on
multivariate data is the tensor product spline [311], but this has the disadvantage of
requiring that the knots fill a rectangular grid, which can present problems depending
on the nature of the data to be fit. A further problem encountered is that most readily
available implementations only support bivariate data. In contrast, the gpr approach
can work on data of arbitrary dimension with little to no modification.

Confidence intervals for spline fits are discussed widely in the literature, includ-
ing [326–331], though the most common software packages fall short of providing
an implementation of these extra steps. Literature regarding uncertainties in deriva-
tives of splines appears to be far more scarce, but includes [332–334]. There has
been some work to provide confidence bands on the gradients of plasma profiles
estimated using so-called exponential splines in [335–337]. A simple approach which
is widespread in plasma physics is to perform Monte Carlo sampling to obtain uncer-
tainty estimates for the fit and its gradients, such as was done in [320]. In contrast to
the mathematical constructions in the preceding references or the brute force appli-
cation of Monte Carlo sampling, the Gaussian process regression approach adopted
here is based directly on the properties of the multivariate normal distribution, and
therefore permits an intuitive interpretation of the variance of the fitted curve and
its derivatives.

2.3 Profile fitting with Gaussian process regression

This section follows the development, notation and nomenclature of [297], with
other references given as needed. For this work, the Python package gptools [306,
307] was implemented to provide support for gpr with gradient constraints and
predictions. The gptools software is described in detail in appendix e. The extensive
work on derivatives of covariance kernels performed as part of this thesis is described
in appendix b.
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2.3.1 Basic details of Gaussian process regression

Gaussian process regression (gpr) is a general-purpose Bayesian nonparametric
regression technique [286, 297, 299–304]. Here, nonparametric refers to the fact
that the observations must be used in order to make a prediction and that a specific
functional form is not assumed: the form of the fit is left exceedingly flexible so that
the data themselves can give rise to the correct shape in a statistically rigorousmanner.
As discussed in [297, 310], there is in fact a very deep mathematical connection
between gpr and splines: smoothing splines are simply a special case of gpr with a
specific choice of prior distribution. The difference is that gpr is cast in a statistical
framework that makes interpretation of the fit, its gradients and the associated
uncertainties far more straightforward. Furthermore, gpr can be used to yield a
low-dimensional representation of the profile uncertainty which enables the use
of efficient uncertainty propagation techniques, such as sparse quadrature [338],
which can dramatically reduce the number of code runs necessary to propagate the
uncertainty through a computationally expensive analysis code. Gaussian process
regression has been in use in one form or another for many years under the term
“kriging” [339], though the term Gaussian process regression is preferred here as it
emphasizes the full statistical framework in which the approach is cast. This section
necessarily assumes a basic understanding of statistics and data analysis, a review of
which was given in section 1.4 and details of which are available in [282–286].

The essence of Gaussian process regression is that all observations and predic-
tions are related through a multivariate normal distribution with a given mean
function m(x) and covariance kernel k(xi, xj) ≡ cov[y(xi), y(xj)]. Here, x ∈ RD is a
D-dimensional vector corresponding to a single input location and cov[a, b] is the
covariance between quantities a and b. For example, x could consist of the R, Z, φ
and t values at which a measurement was made, in which case D = 4. The mean
function can encode any prior knowledge regarding the typical value or underlying
shape of the data, but a zero mean prior distribution (i.e., m(x) = 0) was found to
perform well for the work presented here. The covariance kernel plays a key role in
determining the smoothness of the fit: it determines how the correlation between
points drops off with distance, as illustrated in figure 2.3. For a function to be a
valid covariance kernel, it must give rise to a symmetric positive definite covariance
matrix for all possible inputs. A covariance kernel is said to be stationary if it only
depends on xi, xj through the quantity τ = xi − xj, and is furthermore said to be
isotropic if it only depends on xi, xj through r = |τ|. A stationary covariance kernel
has the same behavior anywhere along a given axis: the curve behaves the same at
x = 0 as it does at x = 10. This is similar to the common meaning of stationarity
in the physical sciences, where it often refers to a process which is not changing in
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Figure 2.3: Illustration of the effect of the covariance kernel. Under the assumption
that the underlying true curve to be reconstructed is smooth, adjacent points should
be very close in value but distant points can differ substantially. The covariance
kernel determines how this correlation drops off with distance. Shown are four
random draws from a Gaussian process with a squared exponential covariance
kernel (equation (2.5)) with σf = 1 and ℓ = 1, conditioned on the single observation
y = 1 at x = 0. In other words, each curve represents a possible realization of the
profile consistent with the observation and the selected covariance kernel. This
choice of covariance kernel causes the values at x = 0.05 (green triangles) to be
close to the observed value y(0) = 1 (black circle). But, the values at x = 0.9 (red
squares) are much less correlated with the observation at x = 0 and hence exhibit
a much wider spread across the four samples shown. This figure is an updated
version of one which originally appeared in [305]. This figure was produced using
make_covariance_demo.py.

time, but in the present work the concept is applied primarily to spatial coordinates.
An isotropic covariance kernel has the same behavior anywhere in the input space:
the curve behaves the same at x = [100, 0] as at x = [0, 10].

A very common and useful choice is the squared exponential (se) covariance
kernel

kse(r) = σ2f exp (− r2

2ℓ2) , (2.5)

where ℓ is the covariance length scale which sets how fast the correlation drops off
and σ2f is the signal variance which sets the extent of variation in the fitted curve. The
se covariance kernel is isotropic and encodes the assumption that the underlying

https://github.com/markchil/thesiscode/blob/master/make_covariance_demo.py
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curve to be predicted is smooth (specifically, infinitely differentiable) and has a
constant covariance length scale throughout its domain. It is very important to note
that the covariance length scale ℓ is not in any way the same thing as the gradient
scale length: even if ℓ is constant throughout the domain, the gradient scale length
can still vary. The covariance length scale simply sets the (constant) distance the
spatial correlation decays over. Further details of the se and other covariance kernels
are given in appendix b.

A key feature advantage of gpr is that the covariance length scale and other
properties of the covariance kernel are automatically inferred from the data, without
requiring manual intervention to tell the fit how smooth or wiggly it should be. To
illustrate this, figure 2.4 shows the results of smoothing noisy synthetic data with a
Gaussian process with an se covariance kernel. In both cases the exact same data
points were used. For one case, the uncertainties are small and the fit automatically
infers a short ℓ which permits lots of spatial structure to get the curve to go near
each observation. For the other case, the uncertainties are large and the fit infers
a long ℓ which does not permit much spatial structure. The residuals are higher,
but the uncertainty in the fitted curve is also higher, commensurate with the higher
uncertainties on the data points.

2.3.2 An intuitive picture of Gaussian process regression

Before presenting the full mathematical details, it is useful to consider the univariate
(D = 1) case with one observation and one prediction in order to obtain an intuitive
picture of how gpr works. Given one location x at which a noise-free observation y
has been made and one location x∗ at which a prediction y∗ is to be made, the joint
prior probability density function (pdf) is then the bivariate normal

fY ,Y∗
(y, y∗) = 𝒩 ([

m(x)
m(x∗)] , [

k(x, x) k(x, x∗)
k(x∗, x) k(x∗, x∗)]) (2.6)

= 𝒩 ([
0
0] , [

k(x, x) k(x, x∗)
k(x∗, x) k(x∗, x∗)]) , (2.7)

where the notation 𝒩 (μ,Σ) refers to the multivariate normal distribution with mean
vector μ and covariance matrix Σ (see section 1.4.5.5) and in the last step a zero
mean function has been used. This is the distribution before any observations have
been included: it encodes prior assumptions regarding smoothness, bounds, etc.
In the context of plasma physics, y could be the electron temperature Te and x the
normalized minor radius r/a, for example. To make this quantitative, take k to be the
squared exponential given in equation (2.5) with σf = 1 and r/ℓ = |x − x∗|/ℓ = 1,
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Figure 2.4: Results of fitting synthetic data with two different noise levels. The Gaus-
sian process fits are shown with ±1σ and ±3σ uncertainty envelopes. The fitting
procedure automatically selects the allowed complexity of the curve given the noise
estimates for the observations. Note that only the map estimate (see section 2.3.6)
is shown, so the uncertainties in the gradient may be underestimated (see the dis-
cussion in section 2.5.1). This figure was produced using make_noise_demo.py.

which gives the joint prior pdf

fY ,Y∗
(y, y∗) = 𝒩 ([

0
0] , [

1 e−1/2

e−1/2 1 ]) . (2.8)

This is shown along with the marginal prior pdfs

fY (y) = ∫
∞

−∞
fY ,Y∗

(y, y∗) dy∗ = 𝒩 (0, 1) (2.9)

fY∗
(y∗) = ∫

∞

−∞
fY ,Y∗

(y, y∗) dy = 𝒩 (0, 1) (2.10)

in figure 2.5. (As indicated in the previous equations, the marginal pdf for y is the
result of integrating the joint distribution over all possible values of y∗. In equa-

https://github.com/markchil/thesiscode/blob/master/make_noise_demo.py
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tion (2.9), for example, y∗ is said to have been marginalized out of the distribution.)
The effect of varying r/ℓ is shown in figure 2.6.

Now consider the situation once a noise-free observation of a specific value for
y has been made. The pdf of y∗ conditioned on this observation is then

fY∗|Y (y∗|y) =
fY ,Y∗

(y = y, y∗)
fY (y = y)

(2.11)

= 𝒩
(
k(x∗, x)
k(x, x)

y, k(x∗, x∗) − (k(x∗, x))
2

k(x, x) )
. (2.12)

For instance, for y = 1 and the parameters used above, this becomes

fY∗|Y (y∗|y = 1) = 𝒩 (e−1/2, 1 − e−1). (2.13)

This is shown as the dashed curve in the top plot of figure 2.5. As is evident from
both the figure and equation (2.13), the effect of including the information y = 1 is
to shift the expected value of y∗ from E[y∗] = 0 to E[y∗|y = 1] = e−1/2 and to lower
the variance from var[y∗] = 1 to var[y∗|y = 1] = 1 − e−1. Hence, the prediction at
x∗ with ±1σ uncertainty interval is y∗ = e−1/2 ± (1 − e−1)1/2 = 0.6 ± 0.8. As will be
seen in subsequent sections, using more observations would reduce the uncertainty
even more, as would be expected.

If instead a noisy observation z = y + ε is made, where the noise is ε ∼ 𝒩 (0, σ2n),
then a joint prior distribution between z and y∗ is used instead:

fZ,Y∗
(z, y∗) = 𝒩 ([

0
0] , [

k(x, x) + σ2n k(x, x∗)
k(x∗, x) k(x∗, x∗)]) . (2.14)

The analysis is then the same as before, with the one change that in equation (2.7)
through equation (2.13) k(x, x) is replaced with k(x, x) + σ2n .

2.3.3 Full details of Gaussian process regression

The objective of profile fitting is to take n (potentially noisy) observations collected
into the vector y at locations which have been gathered into the D × n matrix X =
[x1, … , xn] (where each xi is aD-dimensional column vector) and use them to make
n∗ predictions of the values of the underlying smooth curve collected into the vector
y∗ at locations in theD×n∗ matrix X∗. In the plasma context y could be, for instance,
the electron temperature Te measured as a function of radius, in which case X would
be a (row) vector of radial locations. The key step of gpr is to assume that y has the
joint prior pdf

fY (y) = 𝒩 (m(X),K(X,X) + Σn) , (2.15)
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Figure 2.5: Joint prior probability density function fY ,Y∗
(y, y∗) (grey contours), with

the marginal pdfs fY (y), fY∗
(y∗) (solid blue curves), the conditional pdf fY∗|Y (y∗|y =

1) (dashed red curve), and the observation y = 1 (horizontal dashed red line). The
covariance matrix was constructed from a squared exponential covariance kernel
with σf = 1 and r/ℓ = 1. The tilted ellipse shape of the contours is indicative of
the correlation between y and y∗: the values for y and y∗ are expected to be related
(see figure 2.6). The effect of conditioning on the observation y = 1 is to shift the
distribution for y∗ towards 1 and to make the distribution narrower: the shift from
the blue to the red curve in the upper plot represents the change in the state of
knowledge about y∗ after making the observation y = 1. This figure is an updated
version of one which originally appeared in [305]. This figure was produced using
make_single_var_demo.py.

https://github.com/markchil/thesiscode/blob/master/make_single_var_demo.py
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Figure 2.6: Effect of r/ℓ on the shape of the joint prior pdf for r/ℓ = 0.5, 1.0 and
3.0. The values were computed using an se covariance kernel with σf = 1, which is
shown in the lower plot. The smaller r/ℓ is (equivalently, the closer x is to x∗) the
more correlated y and y∗ are, thereby causing a more dramatic elongation of the
tilted elliptical contours. As r/ℓ increases, y and y∗ become less correlated and the
contours become circular. Also shown is the observation y = 1 as the red horizontal
dashed line. As r/ℓ increases, the observation is less informative and therefore the
conditional pdf will be wider. This can also be thought of in terms of the smoothing
effect of ℓ: the larger ℓ is, the smaller r/ℓ will be for any given value of r. Hence,
a larger ℓ leads to a smoother curve by driving down the variance over a larger
region around each observation. This figure is an updated version of one which
originally appeared in [305]. This figure was produced using make_rl_demo.py and
make_rl_scale.py.

https://github.com/markchil/thesiscode/blob/master/make_rl_demo.py
https://github.com/markchil/thesiscode/blob/master/make_rl_scale.py
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where the notation m(X) indicates the n element vector formed by evaluating m(x)
at each of the columns of X, K(X,X) indicates the n × nmatrix formed by evaluating
k(xi, xj) between each of the possible pairs of columns in X, and Σn is the noise covari-
ance matrix of the observations. In general Σn could include correlated noise, but in
this application a diagonal matrix was used to model uncorrelated heteroscedastic
Gaussian noise. While it is possible to include powerful constraints in the prior
distribution/evaluation of the model itself [340], for this work it was found that the
simple zero mean prior distribution as given in [297] was sufficient, such that the
joint prior pdf between the observations y and the predictions y∗ is

fY ,Y∗
(y, y∗) = 𝒩 (0n+n∗

, [
K(X, X) + Σn K(X, X∗)
K(X∗, X) K(X∗, X∗)]) , (2.16)

where X∗, y∗ are the locations and values of the predictions, respectively, and 0n+n∗

is the (n + n∗)-dimensional zero vector. (Note that X∗ ∈ RD×n∗ , y∗ ∈ Rn∗ , where
there are n∗ points at which a prediction is to be made.)

Note that the assumed prior distribution for y and y∗ in equation (2.16) does
not explicitly restrict the prediction y∗ to have a specific functional form (though
refer to equation (2.19) for the form which is implicitly assumed). This choice of
prior distribution merely establishes the spatial structure of the covariance between
any given pair of points (whether observations or predictions). While the use of
a mean function as in equation (2.15) establishes the general shape of the curve
(particularly when only a small number of observations is available), a sufficient
number of observations can pull the predicted curve away from an oversimplified
or otherwise incorrect mean function. In particular, most of the work in this thesis
used a zero mean function, but the resulting curve was far from zero wherever there
were nonzero observations.

What is of interest to make predictions is the conditional pdf of y∗ given the
observations y. From equation (1.53), this is

fY∗|Y (y∗|y) = 𝒩(K(X∗, X)(K(X, X) + Σn)
−1y,

K(X∗, X∗) − K(X∗, X)(K(X, X) + Σn)
−1K(X, X∗)). (2.17)

The conditional mean then gives the prediction and the diagonal elements of the
conditional covariance matrix give the variance in the prediction. As this can be
evaluated at any point x∗, a Gaussian process is said to represent a distribution over
functions. Note that inversion of an n × n symmetric positive definite matrix is
required to find the solution, which leads to an asymptotic complexity of 𝒪(n3).
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Figure 2.7: Synthetic data, gp mean and basis functions centered at each point. The
data are the same as in figure 2.4. The heavy green solid curve is the mean y∗ and
the dotted, colored curves are the weighted basis functions αik(xi,X∗). The points
are color-coded to match the basis function which is centered on that point. As
shown by equation (2.19), the mean is the sum of all six of these basis functions.
This figure was produced using make_noise_demo.py.

The mean of equation (2.17) merits further inspection:

y∗ = E[y∗|y] = K(X∗, X)(K(X, X) + Σn)
−1y (2.18)

y∗(x∗) =
n

∑
i=1

αik(xi, x∗), (2.19)

where the weights αi are linear combinations of the measurements:

α = (K(X, X) + Σn)
−1y. (2.20)

The conditional mean as a function of x∗ is a weighted sum of n copies of the covari-
ance kernel, with each copy centered at an observation as shown in figure 2.7. This
makes the connection between gpr and splines obvious: if k were an appropriately
selected polynomial basis function, this would be equivalent to the spline given in
equation (2.4) with the knots centered at each observation, though with the added
benefits alluded to previously in section 2.2.2 and the additional flexibility of being
able to select from a wider variety of basis functions in order to obtain whatever
properties might be required for the task at hand.

https://github.com/markchil/thesiscode/blob/master/make_noise_demo.py
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2.3.4 Explanation of the result of Gaussian process regression

The end result of Gaussian process regression is the multivariate normal posterior
distribution given in equation (2.17) with mean vector

μ = E[y∗|y] = K(X∗, X)(K(X, X) + Σn)
−1y, (2.21)

and covariance matrix

Σ = cov[y∗, y∗|y] = K(X∗, X∗) − K(X∗, X)(K(X, X) + Σn)
−1K(X, X∗). (2.22)

Here and in equation (2.17), fY∗|Y (y∗|y) is the probability density function (pdf) for
the predictions y∗ at locations X∗ conditioned on the observations y at locations X,
the notation K(A,B) means the result of evaluating the covariance kernel k(xi, xj)
between all possible pairs of locations in A and B, and Σn is the noise covariance
matrix. The mean given in equation (2.21) is then used as the estimate of the profile
and the diagonal elements of the covariancematrix given in equation (2.22) represent
the uncertainty on the fit. The term “posterior distribution” refers to the fact that this
is the distribution that has been conditioned on the observations, and is in contrast
to the “prior distribution” which is the distribution before observations have been
included. The prior distribution encodes any prior knowledge regarding the form
of the solution.

For this construction, the noise is assumed to be (approximately) Gaussian, but
can be correlated and/or heteroscedastic (i.e., each observation can have a different
variance). The approach used in this work also assumes that systematic errors have
been calibrated out and/or are handled in some external uncertainty quantification
step. It is possible, however, to construct a more complicated model which includes
systematic effects – refer to the discussion of Bayesian integrated data analysis (ida)
in section 2.3.10.

To put it more concretely, the following procedure would be used to smooth a
profile with n = 15 measurements of the electron temperature Te sampled at radial
locations r. The data are assumed to have independent, zero-mean Gaussian noise
with standard deviation σTe

which has been estimated separately, and only a single
time slice or averaged profile is analyzed (i.e., univariate smoothing, D = 1). The
smooth curve is evaluated at n∗ = 100 radial locations r∗.

1. Assemble all of the Te measurements into the 15 element vector
y = [Te,1,Te,2, … ,Te,15]T.
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2. Assemble the noise variance σ2Te
along the diagonal of the 15 × 15 matrix

Σn =

⎡
⎢
⎢
⎢
⎢
⎣

σ2Te,1
0 … 0

0 σ2Te,2
… 0

⋮ ⋮ ⋱ ⋮
0 … … σ2Te,15

⎤
⎥
⎥
⎥
⎥
⎦

. (2.23)

3. Evaluate the covariance kernel k(xi, xj) between all pairs of points the observa-
tions were taken at to form the 15 × 15 matrix

K(X,X) =
⎡
⎢
⎢
⎢
⎣

k(r1, r1) k(r1, r2) … k(r1, r15)
k(r2, r1) k(r2, r2) … k(r2, r15)

⋮ ⋮ ⋱ ⋮
k(r15, r1) … … k(r15, r15)

⎤
⎥
⎥
⎥
⎦

. (2.24)

4. Evaluate the covariance kernel k(xi, xj) between all pairs of points the smoothed
curve is to be evaluated at to form the 100 × 100 matrix

K(X∗,X∗) =
⎡
⎢
⎢
⎢
⎣

k(r∗,1, r∗,1) k(r∗,1, r∗,2) … k(r∗,1, r∗,100)
k(r∗,2, r∗,1) k(r∗,2, r∗,2) … k(r∗,2, r∗,100)

⋮ ⋮ ⋱ ⋮
k(r∗,100, r∗,1) … … k(r∗,100, r∗,100)

⎤
⎥
⎥
⎥
⎦

. (2.25)

5. Evaluate the covariance kernel k(xi, xj) between all pairs of points the observa-
tions were taken at and the smoothed curve is to be evaluated at to form the
15 × 100 matrix

K(X,X∗) =
⎡
⎢
⎢
⎢
⎣

k(r1, r∗,1) k(r1, r∗,2) … k(r1, r∗,100)
k(r2, r∗,1) k(r2, r∗,2) … k(r2, r∗,100)

⋮ ⋮ ⋱ ⋮
k(r15, r∗,1) … … k(r15, r∗,100)

⎤
⎥
⎥
⎥
⎦

(2.26)

and its transpose K(X∗,X) = K(X,X∗)T.

6. Construct the posterior mean vector by substituting these quantities into
equation (2.21):

μ = K(X∗, X)(K(X, X) + Σn)
−1y. (2.27)

This is the prediction of the smooth curve.
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7. Construct the posterior covariance matrix by substituting these quantities
into equation (2.22):

Σ = K(X∗, X∗) − K(X∗, X)(K(X, X) + Σn)
−1K(X, X∗). (2.28)

This matrix contains the variance in the individual predictions along the
diagonal and the covariances between the predictions at different points in
the off-diagonal elements.

All of these steps are implemented in open-source software which was developed as
part of this work [306, 307].

2.3.5 Prediction of gradients and their uncertainties

One of the features that makes gpr very well-suited to plasma profile analysis is that
the covariance matrix given in equation (2.22) can be constructed to include not just
the value of the fit but also the gradients of the fit – both for the observations and
for the predictions [297, 341–344]. This means that it is trivial both to add a zero
slope constraint at the magnetic axis and to obtain values and uncertainty estimates
for the gradients. The relationship between a Gaussian process and its derivatives is

cov
[
yi,

∂yj
∂xjd ]

=
∂k(xi, xj)

∂xjd
(2.29)

cov
[

∂yi
∂xic

,
∂yj
∂xjd ]

=
∂2k(xi, xj)
∂xic ∂xjd

, (2.30)

where the notation ∂/∂xjd refers to a derivative with respect to the dth component
of the input xj to the covariance kernel k(xi, xj). Repeated application of these equa-
tions allows derivatives of arbitrary order to be included. By constructing the joint
distribution between the observed values y, observed values ∂y/∂xd (and possibly
higher order derivatives), predicted values y∗ and predicted values ∂y∗/∂x∗d (and
possibly higher order derivatives) it is possible to make a simultaneous prediction of
the underlying smooth curve, its derivative(s) and the uncertainty in both the value
and its derivative(s).

Another application is to use derivative information to incorporate symmetry
and boundary constraints. In the work presented here, an artificial zero slope “obser-
vation” at the magnetic axis was used to implement a symmetry constraint. While
such constraints can be included through transformations on the prior distribution
itself [345], the approach adopted here was found to perform well in practice. (Note
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that [345] uses finite differences to approximate gradients, whereas the approach used
here allows the gradient to be constrained and predicted directly without requiring
such approximations.)

2.3.5.1 The appropriate coordinate systems to impose constraints in

There is a disturbing amount of confusion as to which of the flux surface coordinates
(see section d.2 for a discussion of the more common systems in use) in which it is
appropriate to impose a zero slope constraint at the magnetic axis. The following
discussion, stemming from a conversationwith J. Freidberg [346], attempts to explore
this question and to justify both the use of r/a as the coordinate to perform fits in
and the use of a zero slope constraint at the magnetic axis in this coordinate system.

Take some quantity w to be a flux function: w is constant on a given flux surface,
but varies from flux surface to flux surface. The magnetic axis is the center of the
nested, closed flux surfaces, which is defined to have coordinates (R0,Z0). Consider
the infinitesimal flux surface that encircles the magnetic axis. Clearly, for an infinites-
imal displacement of ±ε in major radius R away from the magnetic axis, either sign
of displacement will end up on the same flux surface. Therefore, it is clear that

dw
dR |R=R0

= 0 (2.31)

is an appropriate constraint, as is

dw
dZ |Z=Z0

= 0, (2.32)

but outboard midplane major radius is a far more useful flux surface label in practice.
These two constraints could in fact be seen as a definition of the magnetic axis.
Converting to minor radius r = R−R0 preserves the condition in equation (2.31), as
does normalizing the minor radius to r/a = (R − R0)/a where a is the minor radius
of the last closed flux surface (lcfs). Now consider w expressed as a function of
some other flux surface label ρ which could be, for example, normalized poloidal
flux ψn. The derivative from equation (2.31) can then be rewritten as

dw
dR

= dw
dρ

dρ
dR

. (2.33)

But, because we have taken ρ to be a flux surface quantity itself, dρ/dR|R=R0
is guar-

anteed to be zero. Therefore, the constraint equation (2.31) will typically be satisfied
independent of the value of dw/dρ at the magnetic axis as long as there is nothing
pathological about the coordinate used or the curve fit to the data.
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But now consider the class of normalized coordinates which are constructed to
act like r/a, specifically the square root of the normalized poloidal flux ρpol = ψ1/2

n
and the square root of the normalized toroidal flux ρtor = φ1/2

n . These coordinates
are often used because the fluxes go like the area, or R2, and hence their square roots
go like R. Now consider the derivative from equation (2.31) again:

dw
dR

= dw
dρpol

dρpol

dR
= dw

dρpol

dρpol

dψn

dψn

dR
. (2.34)

In the middle step it can already be seen that a problem might be expected because
if ρpol ∝ R then dρpol/dR ∝ 1. Substituting dρpol/dψn = 1/(2ψ1/2

n ) gives

dw
dR

= 1
2ψ1/2

n

dw
dρpol

dψn

dR
. (2.35)

The problem is that ψn goes to zero at the magnetic axis, and hence the first term
will blow up. Noting that ψn ∝ R2, the first term goes like 1/R and the third term
goes like R. Therefore, to ensure that dw/dR|R=R0

= 0 is satisfied, we must have
dw/dρpol|ρpol=0 = 0. The same reasoning applies to ρtor.

Another coordinate in common use if the normalized flux surface volume, Vn =
V /Va where V is the volume enclosed by the flux surface of interest and Va is the
volume enclosed by the lcfs. The volume of a given flux surface with centroid Rc
and area A is given by Pappus’ second centroid theorem [347, 348] as V = 2πRcA.
Assuming circular flux surfaces and ignoring the Shafranov shift, the centroid is
Rc = R0 and the area is A = πr2 = π(R − R0)2, so V = 2π2R0(R − R0)2. Therefore,
Vn ∝ R2 (and not R3 as might be intuitively expected), and the same arguments as
for ψn and φn hold.

Because it permits direct application of equation (2.31) and avoids any of the
issues discussed above, the results presented in this thesis primarily come from
fitting the profile as a function of r/awith the constraint dw/d(r/a)|r/a=0 = 0 imposed
through the addition of a synthetic data point to the Gaussian process.

2.3.6 Selection of a covariance kernel and its hyperparameters

The se covariance kernel given in equation (2.5) has two hyperparameters σf and ℓ
that determine the properties of the fit; other choices of covariance kernel may have
more hyperparameters. The term hyperparameter is used because we are referring
to parameters that determine the prior distribution rather than the shape of the
fitted curve directly. It is also instructive to recall at this point that the hyperparam-
eters are not the parameters of a parametric model that the data are reduced into:
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a specific functional form is not assumed, and the observations must be used to
make predictions. Rather, the hyperparameters dictate the structure of the spatial
covariance between any given pair of points (whether observations or predictions)
which, together with the observations, determine the prediction. In other words,
given a specific, arbitrary choice for σf and ℓ, the conditioned pdf in equation (2.17)
will yield a curve that is most consistent with the observations given that particular
choice of hyperparameters. What now remains is to pick the hyperparameters (and
covariance kernel) that are most consistent with the data. Note that this is a different
question than asking which hyperparameters fit the data with the smallest residual:
with the se covariance kernel, for example, one could always make the error small by
taking ℓ to be very small, but then the model would be fitting the noise. There are
several possible approaches to carry out the selection of hyperparameters discussed
under the topic of model comparison and selection in [286, 297]. Three levels of
sophistication are considered here: maximum likelihood estimation, maximum a
posteriori estimation and marginalization over the hyperparameters.

The simplest approach presented here is the maximum likelihood (ml) estimate.
The ml estimate is a point estimate for the hyperparameters consisting of the values
of the hyperparameters that maximize the probability of the observed data y given
the hyperparameters θ. This is simply the marginal pdf for y as in equation (2.9)
(but now given for the general case) with the dependence on the vector of hyperpa-
rameters θ ≡ [σf , ℓ, … ] made explicit:

fY|Θ(y|θ) = 𝒩(m(X|θ),K(X,X|θ) + Σn), (2.36)

where the notations m(X|θ) and K(X,X|θ) respectively refer to the n element mean
vector and n × n covariance matrix constructed using the mean function m and
covariance kernel k, respectively, with the specific hyperparameters θ. Explicitly, the
ml estimate is

̂θml = arg max
θ

fY|Θ(y|θ). (2.37)

In practice what is used is the natural logarithm of the likelihood:

ln fY|Θ(y|θ) = −1
2
yT(K(X,X|θ) + Σn)

−1y − 1
2

ln |K(X,X|θ) + Σn| − n
2

ln 2π,

(2.38)

where a zero-mean prior distribution has been assumed in going from equation (2.36)
to this result. Each of these terms permits a simple interpretation [297]:

• The first term is the only one that depends on the observations y and is related
to how well the model fits the data.
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• The second term depends only on the determinant of the covariance matrix,
and is related to the complexity of the model.

• The final term only depends on the number of observations n and is a normal-
ization constant which does not depend on the hyperparameters θ and hence
does not affect the optimization.

The next level of sophistication is to include prior information on the hyperpa-
rameters in order to obtain the posterior pdf for the hyperparameters. This prior
information, encoded in the (hyper)prior distribution fΘ(θ), can readily be included
in equation (2.38) using Bayes’ rule to give the posterior pdf for the hyperparameters:

fΘ|Y (θ|y) =
fY|Θ(y|θ)fΘ(θ)

fY (y)
. (2.39)

The maximum a posteriori (map) estimate for the hyperparameters is a point esti-
mate consisting of the most likely values of the hyperparmeters θ given the observa-
tions y, or

̂θmap = arg max
θ

fΘ|Y (θ|y). (2.40)

Note that the term in the denominator of equation (2.39) is simply a normalizing
constant which is independent of θ, so the end result is that the expression to be
maximized over θ is simply equation (2.38) with the extra factor ln fΘ(θ) added in.

In order to use a gradient-based optimizer or advanced Markov chain Monte
Carlo (mcmc) sampling schemes such as Hamiltonian Monte Carlo (hmc) [286, 349,
350], it is necessary to have the derivative of equation (2.39) with respect to each
hyperparameter θi ∈ θ:

∂
∂θi

ln fΘ|Y (θ|y) = ∂
∂θi

(ln fY|Θ(y|θ) + ln fΘ(θ) − ln fY (y)) (2.41)

= −1
2
yT ∂

∂θi
(K(X,X|θ) + Σn)

−1y

− 1
2

∂
∂θi

ln |K(X,X|θ) + Σn| + ∂
∂θi

ln fΘ(θ). (2.42)

Note from appendix a.3.1 of [297] the following two identities:

∂
∂θi

K−1 = −K−1 ∂K
∂θi

K−1, ∂
∂θi

ln |K| = tr (K−1 ∂K
∂θi )

. (2.43)
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Substituting,

∂
∂θi

ln fΘ|Y (θ|y) = 1
2
yT(K(X,X|θ)+Σn)

−1 ∂
∂θi

(K(X,X|θ)+Σn)(K(X,X|θ)+Σn)
−1y

− 1
2

tr ((K(X,X|θ) + Σn)
−1 ∂

∂θi
(K(X,X|θ) + Σn)) + ∂

∂θi
ln fΘ(θ), (2.44)

where Σn has been retained inside the derivatives because it may itself depend on
some hyperparameters.

It must be noted that both the ml and map approaches are point estimates: they
select a single value of the hyperparameters given the data and possibly some prior
information. The posterior distribution for θ (equation (2.39)) can, however, have
substantial variance, leading to uncertainty in the fit that is not captured with a point
estimate like ml or map gives. What is better is to employ a fully Bayesian approach
and marginalize (integrate) the predictive distribution over the hyperparameters:

fY∗|Y (y∗|y) = ∫ fY∗,Θ|y(y∗, θ|y) dθ

= ∫ fY∗|Y ,Θ(y∗|y, θ)fΘ|Y (θ|y) dθ, (2.45)

where the second line follows from the definition of conditional probability (equa-
tion (1.11)), the term fY∗|Y ,Θ(y∗|y, θ) is equation (2.17) with the conditioning on the
hyperparameters θ made explicit and fΘ|Y (θ|y) is as in equation (2.39). This in-
tegration was efficiently carried out in practice using Markov chain Monte Carlo
(mcmc) integration [286, 351, 352], specifically the affine-invariant ensemble sampler
discussed in [353, 354]. This algorithm uses an ensemble of many “walkers” (typically
on the order of several hundred) which in effect perform a random walk guided by
the posterior distribution to yield a collection of samples {θ(i)} of the hyperparame-
ters distributed according to fΘ|Y (θ|y) which can then be used to evaluate integrals
like equation (2.45). For the affine-invariant ensemble sampler the random walk
is governed by a single dimensionless parameter, the proposal width a > 1. This
eliminates the need to tune the proposal distribution, beyond selecting a value for
the single parameter a which gives acceptable convergence and mixing between
multiple modes. This formulation can also be used to account for uncertainties in
the independent variable X by noting that the result of equation (2.45) is implicitly
conditioned on X and then marginalizing out the values of X, but this was not done
in the present work.

The choice between different types of covariance kernels is a more complicated
question. In the simplest case, the log-likelihood given in equation (2.38) can be
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recognized as being implicitly conditioned on a choice of covariance kernel. Then,
the best covariance kernel can be selected by picking the one that maximizes the
likelihood, as was done in chapter 5 of [297]. The most general approach is to
use Bayesian model comparison [285, 286] and choose between covariance kernels
based on the evidence, which is the probability of the data given the covariance kernel
(marginalized over the covariance kernel’s hyperparameters):

fY|K (y|k) = ∫ fY|Θ,K (y|θ, k)fΘ|K (θ|k) dθ, (2.46)

where the conditioning on the kernel k has now been made explicit.

2.3.7 Computing mean profiles and their uncertainties from mcmc
output

Given a set of m samples {θ(i)}, the marginalized mean profile is computed using
the law of iterated expectations:

E[y∗|y] = E [E[y∗|y, θ]] = 1
m

m

∑
i=1

E[y∗|y, θ(i)], (2.47)

where E[y∗|y, θ(i)] is the posterior mean given in equation (2.21) evaluated with the
given vector of hyperparameters θ(i). The variance in the marginalized estimate of
the profile is computed using the law of total variance:

var[y∗|y] = var [E[y∗|y, θ]] + E [ var[y∗|y, θ]]

= 1
m − 1

m

∑
i=1

(E[y∗|y, θ(i)] − E[y∗|y])
2 + 1

m

m

∑
i=1

var[y∗|y, θ(i)], (2.48)

where var[y∗|y, θ(i)] is the diagonal of the posterior covariance matrix given in equa-
tion (2.22) evaluated with the given vector of hyperparameters θ(i).

The uncertainties in the normalized inverse gradient scale lengths are computed
using the uncertainty propagation equation [282]:

a
Ly

≈ −a
∂y/∂R
y

= −
y′

y
(2.49)

var
[
a
Ly ]

= var[y] (
y′

y2)

2
+ var[y′] (−1

y)

2
+ 2 cov[y, y′] (

y′

y2) (−1
y) ,

(2.50)
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where y′ = ∂y/∂(r/a). The covariance cov[y, y′] is computed for a given set of hy-
perparameters by using equation (2.29) when computing the relevant off-diagonal
elements of the covariance matrix given in equation (2.22). The marginalized covari-
ance is computed from the mcmc samples using the law of total covariance:

cov[y∗, y′
∗|y] = E [ cov[y∗, y′

∗|y, θ]] + cov [E[y∗|y, θ],E[y′
∗|y, θ]]. (2.51)

While equation (2.49) is nonlinear with respect to y and hence the uncertainty
propagation equation might not be expected to deliver reliable estimates, it was
generally found to be fairly accurate over 0 ≤ r/a ≲ 1 when compared to a brute
force Monte Carlo estimate of a/Ly.

2.3.8 Drawing samples for uncertainty propagation

One of the main goals of adopting an improved approach to fit plasma profiles is to
be able to produce inputs for an uncertainty propagation technique such as Monte
Carlo (or other more efficient techniques like Latin hypercube sampling [355], quasi
Monte Carlo [291] or sparse quadrature [338]). Specifically, for many of the codes
used to analyze plasma data, what is needed is not a random draw of a single scalar
quantity but rather a random realization of the entire profile y∗ at the n∗ points in
X∗. This is exceptionally straightforward with gpr, as the result (equation (2.17))
is simply a multivariate normal distribution for the values of the profile y∗ at the
points X∗. This section discusses well-established techniques to efficiently produce
random samples from the multivariate normal distribution, or otherwise compute
the expectation of a code output given a multivariate normal distribution on the
inputs.

The standard recipe for producing a random draw ̃y∗ from the n∗-dimensional
multivariate normal distribution 𝒩 (μ,Σ) is to produce through standard means a
vector u of n∗ independent, standard normal variables (i.e., u ∼ 𝒩 (0n∗

, In∗
) where

0n∗
is the n∗-dimensional zero vector and In∗

is the n∗ × n∗ identity matrix), then
find

̃y∗ = Au + μ, (2.52)

where Σ = AAT [296–298]. A common, computationally efficient choice for how to
decompose Σ is the Cholesky decomposition Σ = LLT, where L is lower triangular.
But for the application of advanced uncertainty propagation methods such as quasi
Monte Carlo [291] or sparse quadrature [338], large increases in the convergence
rate can be gained by reducing the dimension of the parameter space that must be
explored. When using the Cholesky decomposition the dimension of the space to
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be sampled is equal to the number of points the curve is evaluated at, n∗. Instead,
consider the eigendecomposition:

Σ = QΛQ−1 = QΛ1/2(QΛ1/2)T, (2.53)

where in the last step the fact that Σ is guaranteed to be symmetric and hence have
an orthogonal matrix of eigenvectors was used. Hence, we can take A = QΛ1/2.
In practice, the eigenvalues drop off quite rapidly and can therefore be truncated
to produce draws while sampling in a space with much lower dimension than the
number of points the curve is to be evaluated at.

If mcmc is being used to marginalize over the hyperparameters, then sampling
must take place hierarchically [286]: first, a sample ̃θ ∼ fΘ|Y (θ|y) is drawn from
equation (2.39) using mcmc. Then, using equation (2.52), a sample ̃y∗ is drawn from
fY∗|Y ,Θ(y∗|y, θ = ̃θ). Performing such sampling repeatedly then gives an ensemble
of possible realizations { ̃y(i)

∗ } to be used as inputs in the next step of the analysis
workflow.

2.3.9 Extensions to handle non-local measurements and outputs

2.3.9.1 Mathematical framework

The previous sections have only considered gpr when all measurements are local:
the diagnostic collects the data at a single point in space. But, many diagnostics
measure the value integrated along a line of sight instead; notable examples relevant
to this work include the two-color interferometer (tci) [356–359], x-ray imaging
crystal spectrometer (xics, specifically hirex-sr on Alcator C-Mod) [360] and
soft x-ray diode arrays (sxr, specifically the xtomo systems on Alcator C-Mod)
[361]. It is of great interest to be able to include such data in the same profile fit
as local measurements so that all of the measurements contribute to reducing the
uncertainty in the fit. Work similar to this was introduced in [345], but they assume
a zero mean function and their expressions unfortunately contain several typos. Li
et al. [313] uses Gaussian processes to invert soft x-ray data from w7-as, including
a fairly sophisticated nonstationary covariance kernel. Langenberg et al. [317] has
applied gpr to invert synthetic data representing the spectroscopy system planned
for w7-x. Boyle [343] gives exact expressions for integrals of Gaussian processes and
comments on the issues inherent to this approach, but does not give an approximate
formulation like the one used here.

A line-integrated quantity z (for instance, the line-integrated density obtained
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from an interferometer) can be approximated by a weighted sum:

z ≡ ∫ y dl ≈
nQ

∑
i=1

wiyi(xi), (2.54)

where the quadrature weights wi and corresponding quadrature points xi are chosen
with one of several rules, such as the trapezoid rule or Simpson’s rule. Furthermore,
some collection z ∈ Rn of n such quantities can be represented as thematrix product

z = Ty, (2.55)

where y ∈ RnQ is the vector containing the local quantity at each of the quadrature
points X ∈ RD×nQ and T ∈ Rn×nQ is the transformation matrix. Note that local mea-
surements can be included in z simply by including a row in T which only contains
one non-zero entry. The derivation below will work for any linearly-transformed
quantity (or quantity which can be approximated as such), line integrals are used
here simply because they are most relevant to this work. This derivation will also in-
clude a non-zeromean function, so as to present the complete form of gpr supported
by the gptools software [306, 307].

Given y ∼ 𝒩 (μ,Σ), a fundamental property of the multivariate normal distribu-
tion is that

z = Ty ∼ 𝒩 (Tμ, TΣTT). (2.56)

Start by assuming a noise-free Gaussian process joint prior distribution for y and y∗
with mean function m(x) and covariance kernel k(xi, xj):

fY ,Y∗
(y, y∗) = 𝒩 ([

m(X)
m(X∗)] , [

K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)]) . (2.57)

Then we have the following joint prior distribution for transformed observations
z = Ty and transformed predictions z∗ = T∗y∗ (if local predictions are desired, T∗
is simply the identity matrix, In∗

):

fZ,Z∗
(z, z∗) = 𝒩( [

Tm(X)
T∗m(X∗)] ,

[
T 0
0 T∗] [

K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)] [

TT 0
0 TT∗ ] + [

Σn 0
0 0] ),

(2.58)
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where 0 is the zero matrix and Σn ∈ Rn×n is now the Gaussian noise on the trans-
formed observations z. Using equation (1.53), the posterior distribution for z∗ condi-
tioned on z is

fZ∗|Z(z∗|z) = 𝒩(T∗m(X∗) + T∗K(X∗,X)TT(TK(X,X)TT + Σn)
−1

(z − Tm(X)),

T∗K(X∗,X∗)TT∗ − T∗K(X∗,X)TT(TK(X,X)TT + Σn)
−1TK(X,X∗)TT∗ ).

(2.59)

Note that here X ∈ RD×nQ and X∗ ∈ RD×nQ∗ are the locations of the quadrature
points for the observed and predicted quantities, respectively. Again, the mean of
this distribution is the prediction for the smoothed and transformed quantities z∗
and the covariance matrix contains the uncertainty in this prediction. If all that is
being predicted is the profile of the local quantity y∗, then T∗ = In∗

and this simplifies
to

fY∗|Z(y∗|z) = 𝒩(m(X∗) + K(X∗,X)TT(TK(X,X)TT + Σn)
−1

(z − Tm(X)),

K(X∗,X∗) − K(X∗,X)TT(TK(X,X)TT + Σn)
−1TK(X,X∗)).

(2.60)

Furthermore, if T = In and m(x) = 0, this reduces to equation (2.17), as expected.
The final result necessary to use equation (2.59) is the log-likelihood, which is

simply

ln fZ|Θ(z|θ) = − 1
2(z − Tm(X|θ))

T
(TK(X,X|θ)TT + Σn)

−1
(z − Tm(X|θ))

− 1
2

ln|TK(X,X|θ)TT + Σn| − n
2

ln 2π. (2.61)

The three terms still have the same interpretation as was given for the simpler form
given back in section 2.3.6. If m(x) = 0 and T = In, this reduces to equation (2.38).
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The derivative of this expression with respect to the hyperparameters is

∂
∂θi

fZ|Θ(z|θ) = 1
2 (T ∂

∂θi
m(X|θ))

T

(TK(X,X|θ)TT + Σn)
−1

(z − Tm(X|θ))

− 1
2(z − Tm(X|θ))

T ∂
∂θi

(TK(X,X|θ)TT + Σn)
−1

(z − Tm(X|θ))

+ 1
2(z − Tm(X|θ))

T
(TK(X,X|θ)TT + Σn)

−1
(T ∂

∂θi
m(X|θ))

− 1
2

∂
∂θi

ln |TK(X,X|θ)TT + Σn| (2.62)

= 1
2 (T ∂

∂θi
m(X|θ))

T

(TK(X,X|θ)TT + Σn)
−1

(z − Tm(X|θ))

+ 1
2(z − Tm(X|θ))

T
(TK(X,X|θ)TT + Σn)

−1

⋅ ∂
∂θi

(TK(X,X|θ)TT + Σn)(TK(X,X|θ)TT + Σn)
−1

(z − Tm(X|θ))

+ 1
2(z − Tm(X|θ))

T
(TK(X,X|θ)TT + Σn)

−1
(T ∂

∂θi
m(X|θ))

− 1
2

tr ((TK(X,X|θ)TT + Σn)
−1 ∂

∂θi
(TK(X,X|θ)TT + Σn)) .

(2.63)

Note that the result only requires the inversion of an n × n matrix, where n is
the number of transformed observations: the term which previously dominated the
computational complexity is still simply 𝒪(n3), and is independent of the number
of quadrature points used. But forming the covariance matrices K(X,X) ∈ RnQ×nQ ,
K(X∗,X∗) ∈ RnQ∗×nQ∗ and K(X∗,X) ∈ RnQ∗×nQ requires the covariance kernel to be
evaluated between each pair of input and output quadrature points. Furthermore,
the product TK(X,X)TT has complexity 𝒪(nn2Q + n2nQ), the product T∗K(X∗,X∗)TT∗
has complexity 𝒪(n∗n

2
Q∗ + n2∗nQ∗) and the product T∗K(X∗,X)TT has complexity

𝒪(n∗nQ∗nQ + n∗nQn). Since the n2Q and n2Q∗ terms can become large and the covari-
ance kernel can sometimes be computationally expensive to evaluate, this means it
is beneficial to keep the number of quadrature points required for both the inputs
and the outputs small. This can be accomplished both by using a coarse grid as well
as by using the same quadrature points (but with different weights) for each chord.
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2.3.9.2 Handling tci data

As part of this work, a tool was written to allow the tci data to be combined with the
Thomson scattering data to help constrain the density profile. This code uses the
trapezoid rule with equally-spaced points along each chord to select the quadrature
points and compute the quadrature weights. Because of the inefficient selection
of quadrature points, the code takes a prohibitively long time to run.1,2 This imple-
mentation is included in the profiletools software described in appendix f and
[308, 309]. The software also has the ability to automatically set the weight for any
quadrature point which lies in the shadow of the limiter to zero, which helps increase
the stability of the fit by preventing it from adopting unphysically high values at the
edge of the fitting domain in order to get better agreement with the tci data. The
results of applying this tool to Alcator C-Mod data are given in section 2.5.2.

2.3.9.3 Computing volume averages

This framework can also be used to compute the volume averages of profile quantities,
given here for the electron density ne:

⟨ne⟩vol = 1
Va ∫ ne dV , (2.64)

where Va is the total volume enclosed by the lcfs. Noting that the volume Vr
enclosed by a flux surface is a flux surface label and defining the normalized flux
surface volume as Vn = Vr/Va, this can then be written as:

⟨ne⟩vol = ∫ ne(Vn) dVn. (2.65)

If ne is expressed as a function of a different flux surface label, this can be transformed
according to

⟨ne⟩vol = ∫ ne(x)
dVn
dx

dx, (2.66)

1. The analysis combining Thomson scattering and tci data presented in section 2.5.2 takes about ten
wall-clock minutes on a workstation with two 2.66GHz Intel® Xeon® x5650 processors which supports
a total of 24 threads to find the map estimate and about 45 wall-clock minutes to run the mcmc sampler
for a single profile. The map estimate is run in parallel with one starting point per thread, which
means that adding additional threads will not help performance. The mcmc sampler will benefit from
additional threads.

2. There was an attempt to implement a more efficient version using the TRIPPy code [362] as part of an
undergraduate research project. The use of TRIPPy allows the code to compute the quadrature weights
for each chord using the same quadrature points, thereby reducing the run time by a factor equal to
the number of chords. Unfortunately the code is not robust to changes in the tci chord locations, and
so only works reliably on recent shots.
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where x is some arbitrary flux surface label. This integral can then be discretized as

⟨ne⟩vol ≈
nQ

∑
i=1

ne(xi)
dVn
dx |x=xi

wi, (2.67)

where the weights wi could either be Δxi or weights generated by some more com-
plicated rule such as the trapezoid rule or Simpson’s rule. With ⟨ne⟩vol cast in the
same form as equation (2.54), the volume integral can be included in the prediction
simply by placing the weights dVn/dx|x=xiwi in a row of the output transformation
matrix T∗ when evaluating equation (2.59).

Note that the predictive covariance matrix of equation (2.59) will include both
the variance (i.e., uncertainty) of ⟨ne⟩vol as well as its covariance with the other
predictions. Therefore, this formulation permits one to predict the peaking factor

fp =
ne(ψn = 0.2)

⟨ne⟩vol
(2.68)

relevant to the work on electron density peaking in H-mode plasmas in [68, 363–368],
complete with an uncertainty estimate which accounts for the potential covariance
between ne(ψn = 0.2) and ⟨ne⟩vol. (Here, ψn = (ψ − ψ0)/(ψa − ψ0) is the normalized
poloidal flux, where ψ is the poloidal flux, ψ0 is the poloidal flux at the magnetic axis
and ψa is the poloidal flux at the lcfs.) Using the uncertainty propagation equation
[282], the variance in fp is approximately

var[fp] ≈
var[ne(ψn = 0.2)]

⟨ne⟩2vol
+

var[⟨ne⟩vol](ne(ψn = 0.2))
2

⟨ne⟩
4
vol

− 2
cov[ne(ψn = 0.2), ⟨ne⟩vol]ne(ψn = 0.2)

⟨ne⟩
3
vol

. (2.69)

Note that this expression is based on a linearization, and hence would be expected
to break down if ⟨ne⟩vol ≪ ne(ψn = 0.2). While in general one would in fact
expect ⟨ne⟩vol < ne(ψn = 0.2), these two quantities will still be of the same order of
magnitude in any realistic case.

The ability to compute volume averages when fitting the profile also permits the
calculation of the global effective collisionality

νeff = 0.1
Zeff⟨ne,[1019 m−3]⟩volR0,[m]

⟨Te,[keV]⟩2vol
, (2.70)

but no attempt has been made to quantify the covariance between ⟨ne⟩vol and ⟨Te⟩vol.
(Here, the subscripts in brackets indicate the units a quantity must be given in, R0 is
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the major radius of the magnetic axis and Zeff = ∑j Z
2
j nj/ ∑j Zjnj is the effective ion

charge [1] where Zj is the charge number of ion species j and nj is the ion density of
species j.)

2.3.10 Gaussian process regression versus Bayesian integrated data
analysis

It is worth comparing the present results to the work that has been done on Bayesian
integrated data analysis (ida) to combinemultiple data sources and even interpretive
models into a single self-consistent analysis [285, 312, 315, 369–394]. This type of inte-
grated analysis approach has in fact been done in a way that incorporates Gaussian
processes on mast [316]. While both techniques share the fact that they are built
within a Bayesian statistical framework, they differ substantially in their details and
how they fit into an analysis workflow. Essentially, ida constructs a joint probability
distribution that can encompass many diverse diagnostics and other information.
Such an analysis can even start from the level of more or less raw data and then
infers a joint posterior distribution for the desired quantities and profiles given these
observations. Note that the prior distribution for the profiles to be inferred through
ida could be a Gaussian process, in which case ida inherits all of the advantages of
gpr discussed in this thesis, plus the statistical advantages of ensuring consistency
between all of the diagnostics. The role of gpr in the present work, however, is
to simply replace the profile fitting, data fusion and sample generation steps of a
traditional analysis workflow while still using the existing procedures for turning the
raw data into discrete measurements. In this way, gpr can be more readily deployed
in cases where trusted data analysis codes are already in place, though it does not
have some of the very powerful capabilities that the more complicated ida approach
offers. Simplified workflows using splines, gpr and one form of ida are shown in
figure 2.8.

2.4 Verification of Gaussian process regression for
tokamak profile fitting using synthetic data

2.4.1 Basic case

In order to verify the suitability of theGibbs covariance kernel given in equation (b.73)
with the tanh covariance length scale function given in equation (b.78) for fitting toka-
mak profile data, a synthetic profilewas constructed using a cubic spline. To represent
the Thomson scattering system on Alcator C-Mod, the measurements came from
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Figure 2.8: Examples of simplified workflows for obtaining some quantity w and
its uncertainty from an input Te profile using the traditional spline-based approach,
gpr and ida. With splines the computation of the fit, determining the uncertainty
on the fit and the drawing of perturbed samples are all typically separate operations.
Doing the fit with gpr replaces these three operations, but otherwise leaves the
workflow intact. Applying ida to just the analysis of the raw profile data replaces the
diagnostic analysis steps, but leaves the process of computing the output quantity w
itself untouched. It is also possible to perform a fully integrated analysis to get from
raw data to the desired output quantities (such as has been done to estimate Zeff
[390–392] and has been used with interpretive transport codes [377]), in which case
even these steps are absorbed into the ida step. These figures are updated versions
of ones which originally appeared in [305].
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two systems with equally-spaced channels: a core system covering 0 < r/a < 0.97
and a noisier edge system covering 0.97 < r/a < 1.07. An equal number of uniformly-
spaced points was used for each system. Zero-mean Gaussian noise with a relative
uncertainty of σ/y = 0.03 was added to the core data points and additive Gaussian
noise with an absolute uncertainty of σ = 0.1 was added to the edge data points.
The fits were performed using the same prior distributions and similar core/edge
constraints as were used on the experimental data in section 2.5.1. Figure 2.9 shows
the results in the core and edge regions for 15, 30 and 60 points for each system. For
reference, the Thomson scattering system on Alcator C-Mod has 15 core channels
and 18 edge channels.

In order to assess the consistency of the fit as more points are added and the
reasonableness of the error estimates from the fit, this procedure was repeated five
times for each of n ∈ {3, 7, 15, 30, 60, 120} points in each system. The root-mean-
square (rms) error between the posterior mean of the fit and the true curve

erms = √E[(y − ytrue)2] (2.71)

was computed in each case along with the rms uncertainty estimate

σrms = √E[σ2] (2.72)

from the fit. The results are shown in figure 2.10. As expected, as more points are
added the rms discrepancy between the fit and the true curve goes down. Further-
more, the uncertainty estimate from the fit tracks this trend. Reducing the noise was
observed to accelerate the convergence, as would be expected.

2.4.2 Effect of errors in the independent variable

The analysis presented here ignores the errors in the independent variable (r/a, etc.),
despite the fact that there is both observed variation in the magnetic equilibrium
over the time window observed and unknown systematic errors in the magnetic
equilibrium reconstruction. In order to assess the impact of this neglect of errors
in the independent variable another synthetic data set was constructed with data
points at the locations where the Thomson scattering systems measure and the x
coordinate perturbed with Gaussian noise whose covariance matrix matched that
of the observed variation of the coordinate mapping over the time window analyzed.
The observed covariance matrix is shown in figure 2.11. As can be seen, the variances
are very small: the magnetic equilibrium was quite steady over the period considered.
As such, it is likely that systematic errors dominated the actual coordinate mapping,
but no attempt has been made to estimate these errors. In order to illustrate the
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Figure 2.9: Results of fitting synthetic data for n ∈ {15, 30, 60} channels in each
system (core, edge). Examination of many realizations of the measurement noise
shows that even with the lowest number of points (comparable to the Thomson
scattering system on Alcator C-Mod) the fit does a reasonable job of capturing the
true curve within its error bars. Obviously the quality of the fit improves as more
points are added. The true curve is shown as the black dashed line, the synthetic
data are the green points with ±1σ error bars, the map estimate is shown as the
red dash-dot curve and the mcmc estimate is shown as the blue solid curve. The
fits are shown with ±1σ and ±3σ uncertainty envelopes. These figures are updated
versions of ones which originally appeared in [305]. These figures were produced
using synthetic_test_consistency.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_consistency.py
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Figure 2.10: Demonstration of asymptotic consistency for the (a) value and (b) gradi-
ent of the fit as the number of points for each system covers n ∈ {3, 7, 15, 30, 60, 120}.
Five realizations of the synthetic measurement noise were used at each value of n.
The points are plotted with 25% transparency so that the density of the scatterplot
can be seen. The values connected to the map estimate are shown in red and the
values connected with the mcmc estimate are shown in blue. The rms discrepancy
between the fit and the true curve goes down as more points are added and the
rms uncertainty from the fit matches this trend. As expected, the map estimate
under-predicts the uncertainties in both the value and the gradient. These figures
are updated versions of ones which originally appeared in [305]. These figures were
produced using synthetic_test_consistency.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_consistency.py
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Figure 2.11: Observed covariancematrix for the r/a coordinates of the Thomson scat-
tering diagnostic. The data from the range 0.965 s ≤ t ≤ 1.365 s of shot 1101014006
were used. Elements 0 through 14 are the core system and elements 15 through 32
are the edge system. The correlation is so high and uniform in the portion of the
matrix corresponding to the edge system because of how close the measurement
locations are to each other. The regions of positive versus negative correlation arise
because the core Thomson scattering system measures both above and below the
magnetic axis. Note the exceedingly small values indicated on the color bar: the
typical standard deviation of any given point is only about 2 × 10−3. This figure was
produced using synthetic_test_EIV.py.

potential effect (or lack thereof) of the errors in r/a, five times the observed variation
was used. The actual correlations were preserved, however, since the magnetic equi-
librium must vary in a self-consistent manner. The results are shown in figure 2.12.
Even with the inflated noise level, the results are very similar both with and without
the added noise. Therefore, it was concluded that the effect of random noise in the
coordinate mapping of the Thomson scattering diagnostic is negligible.

2.4.3 Comparison of various covariance kernels

2.4.3.1 Stationary covariance kernels applied to core data

To test the effect of the various stationary covariance kernels discussed in appendix b,
the core portion of the 15 points/region case of the synthetic data discussed in sec-
tion 2.4.1 was fit using the squared exponential (se, equation (2.5), section b.1), ra-
tional quadratic (rq, section b.2, equation (b.22)) and Matérn (section b.3, equa-

https://github.com/markchil/thesiscode/blob/master/synthetic_test_EIV.py
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Figure 2.12: Results of fitting synthetic data both with (red dash-dot, triangles) and
without (blue solid, circles) the effect of errors in the independent variable. The
notation “eiv” in the legend refers to “errors-in-variables.” The (co)variance in r/a
was scaled up by a factor of five from what was actually observed in the experiment,
and the horizontal error bars shown on the red triangles correspond to this scaled
standard deviation. Even at this level, the effect of this error on the fit is minimal.
The true curve is shown as the dashed black curve. The colors of the data points
correspond to the curve which was fit to them. This figure was produced using
synthetic_test_EIV.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_EIV.py
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Table 2.1: Stationary covariance kernels tested with synthetic data and the prior
distributions for their hyperparameters. The data are taken to be dimensionless, so
all hyperparameters are dimensionless.

Case Parameter Prior distribution

se σf 𝒰 (0, 10)
ℓ 𝒰 (0, 5)

rq σf 𝒰 (0, 10)
α 𝒰 (0.01, 10)
ℓ 𝒰 (0, 5)

Matérn σf 𝒰 (0, 10)
ν 𝒰 (1.01, 50)
ℓ Gamma(13, 12) (m = 1, σ = 0.3)

Table 2.2: Parameters used for mcmc sampling of the hyperparameters of the
various stationary covariance kernels applied to synthetic data. “Walkers” is the
number ofMarkov chains run in parallel, “Burn” is the number of samples discarded
from the start of each chain, and “Thin” is the factor by which each chain’s remaining
samples were thinned before computing profiles.

Case Proposal width, a Walkers Samples per walker Burn Thin

se 2 200 300 200 100
rq 6 200 400 300 100
Matérn 2 200 400 300 100

tion (b.32)) covariance kernels. The rq covariance kernel represents a mixture of
se covariance kernels with different length scales, the distribution of which is de-
termined by an additional hyperparameter α. As α → ∞ the rq covariance kernel
reduces to the se covariance kernel. The Matérn covariance kernel represents a
Gaussian process which is only differentiable up to order n < ν, where ν is an addi-
tional hyperparameter. As ν → ∞ the Matérn covariance kernel reduces to the se
covariance kernel. Refer to the relevant sections in appendix b for more details on
these covariance kernels.

The hyperparameters α for the rq and ν for the Matérn covariance kernels were
treated as free hyperparameters with uninformative prior distributions. The prior dis-
tributions used are given in table 2.1 and the parameters used for the affine-invariant
ensemble sampler are given in table 2.2. The gamma prior for ℓ of the Matérn covari-
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Figure 2.13: Synthetic core data and fitted profiles for the squared exponential,
rational quadratic and Matérn covariance kernels. The true curve is shown as
the black dashed line. All fits were evaluated with both the map (red dash-dot
line) and mcmc (blue solid line) techniques. This figure was produced using
synthetic_test_stationary.py.

ance kernel was found to be necessary to keep the optimizer from getting stuck in a
region with ℓ = 0 and failing to find a valid solution. The uniform prior on ν was
used to enforce ν > 1 so that the fit would be differentiable and the uniform prior on
α was used to enforce α > 0. The fitted profiles are given in figure 2.13, the posterior
distributions of the hyperparameters are shown in figure 2.15, summary statistics for
the posterior distributions of the hyperparameters are given in table 2.3 and a plot
showing the rms error and uncertainty estimates is given in figure 2.14. All three
covariance kernels did a reasonable job of fitting the core profile. The rms errors
and standard deviations in figure 2.14 show that the se covariance kernel produced
both the smallest rms error and the most reliable uncertainty estimate for both the
map and mcmc estimates.

As shown in figure 2.13, all three covariance kernels obtained similar posterior
distributions for σf . The se covariance kernel favored a shorter covariance length
scale than either the rq or Matérn covariance kernels, but the posterior distributions
still encompass the same order of magnitude.

The results for α in the rq covariance kernel and ν in the Matérn covariance
kernel are interesting. In both cases, the relevant hyperparameter has a posterior

https://github.com/markchil/thesiscode/blob/master/synthetic_test_stationary.py
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Figure 2.14: Root-mean-square errors and uncertainty estimates for the fits to
synthetic core data using various stationary covariance kernels. The “rms error”
(lighter, cross-hatched bars) is as given in equation (2.71) and the “rms σ” (darker
bars) is as given in equation (2.72). Loosely speaking, the closer the “σ” bar is
to the corresponding “error” bar, the more accurate the fit’s uncertainty estimate
is. The smaller the “error” bar is, the more accurate the fit itself is. For both the
map (red) and mcmc (blue) estimates, the se covariance kernel had a smaller rms
error than the rq and Matérn covariance kernels. This figure was produced using
synthetic_test_stationary.py.

mode at some low value (α = 0.037 and ν = 2.2, respectively), and a distribution
which is more or less uniform over the (broad) prior bounds. This indicates that
the fits with different values of α or ν are equally likely above some threshold. This
calls the interpretation of the mcmc estimate into question: the wider the posterior
distribution on α or ν is, the less of an effect the peak at low values has on the fitted
curve. Therefore, if there is in fact complete prior ignorance of α or ν, then the

https://github.com/markchil/thesiscode/blob/master/synthetic_test_stationary.py
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Figure 2.15: (Continues on the facing page.)
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Figure 2.15: (Continued from the facing page.) Matrices of univariate (on the diago-
nal) and bivariate marginal posterior distributions and mcmc sampler chains (at
the bottom) for the hyperparameters of the (a) squared exponential, (b) rational
quadratic and (c) Matérn covariance kernels fit to synthetic core data. These plots
are essentially 1- and 2d projections of posterior distributions fΘ|Y (θ|y) as given in
equation (2.39). The vertical red line indicates the burn-in period; only the samples
to the right of the line were used. To keep the figure legible the vertical scales for the
sampler chains are not shown: what matters is that each chain has settled into a sta-
tionary behavior. These figures were produced using synthetic_test_stationary
.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_stationary.py
https://github.com/markchil/thesiscode/blob/master/synthetic_test_stationary.py
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Table 2.3: Summary statistics for the posterior distributions for the hyperparameters
of the various stationary covariance kernels applied to synthetic core data. Themode
is the map estimate. The mean and 95% interval for α and ν are not very useful
estimators, given that the distribution for each of those appears to consist of a spike
at some low value and a roughly uniform distribution over the rest of the bounds.

Case Parameter Mode Mean 95% interval

se σf 0.581 1.40 [0.399 , 5.68]
ℓ 0.533 0.633 [0.391 , 1.03]

rq σf 0.759 1.56 [0.384 , 6.53]
α 0.0366 3.38 [0.0224, 9.30]
ℓ 1.74 1.02 [0.453 , 2.95]

Matérn σf 0.562 1.62 [0.413 , 6.17]
ν 2.20 17.2 [1.78 , 47.4 ]
ℓ 1.10 0.902 [0.538 , 1.55]

marginalized fit should consist almost entirely of samples with arbitrarily large α or
ν, and hence is equivalent to using an se covariance kernel. Note that the plots of the
posterior distributions for the hyperparameters in figure 2.15 support this conclusion:
the bivariate marginal distributions between α and ℓ of the rq covariance kernel
and between ν and ℓ of the Matérn covariance kernel both have “L” shapes which
favor longer covariance length scales at smaller values of α or ν, but then for higher
α or ν favor shorter values covering a range similar to the range of values that ℓ for
the se covariance kernel takes. Therefore, if the rq or Matérn covariance kernels
are to be used, either a fixed value of α or ν should be chosen, or a stronger prior
distribution for α or ν must be used. Because of the observation that the mcmc
estimate converges to the se covariance kernel for both the rq covariance kernel
with an uninformative prior distribution for α and theMatérn covariance kernel with
an uninformative prior distribution for ν and the observation that the se covariance
kernel did a better job of fitting the synthetic data, the se covariance kernel was used
whenever a stationary covariance kernel was required in the remainder of this thesis.

2.4.3.2 Nonstationary covariance kernels applied to entire profiles

In order to observe the effects of the various nonstationary covariance kernels dis-
cussed in section b.4, a synthetic data set equivalent to the 15 point/region case in
section 2.4.1 was fit with a variety of nonstationary covariance kernels, including
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both the Gibbs covariance kernel (section b.4.1, equation (b.73)) with a variety of
covariance length scale functions and the se covariance kernel (equation (2.5), sec-
tion b.1) with a variety of input warping functions (section b.4.2). The nonstationary
covariance kernels tested and the prior distributions over the hyperparameters used
are given in table 2.4. Each case required slightly different settings for the mcmc
sampler; the parameters are given in table 2.5. The covariance kernels tested are as
follows:

Gibbs covariance kernel + tanh covariance length scale function (See section b.4.1,
equation (b.73), section b.4.1.1 and equation (b.78).) This is the nonstationary
covariance kernel used for most of this thesis. The covariance length scale
function consists of a long-ℓ region in the core joined to a short-ℓ region in
the edge using a tanh function. The prior distribution for the hyperparame-
ters is very similar to what is used elsewhere in this thesis. Note that the tanh
function is used only to set the way the covariance length scale varies in space,
not to set an explicit functional form. See section 2.5.5 for a fit which explicitly
incorporates the popular modified hyperbolic tangent (“mtanh”) function.3

Gibbs covariance kernel + exponential of one Gaussian (See section b.4.1, equa-
tion (b.73), section b.4.1.2.1 and equation (b.80).) This is similar to the ap-
proach used in [395]. The covariance length scale is equal to ℓ0 far from the
data and is modified by the exponential of a single Gaussian basis function
near the data. The distant covariance length scale ℓ0 has a prior distribution
similar to what is used for the core covariance length scale of other covariance
kernels. The center μ1 and width σ1 of the one Gaussian is allowed to vary
throughout the region where there are data. The Gaussian prior distribution
for the amplitude of the Gaussian β1 is again inspired by [395]. The width was
selected to keep the value of ℓ(x) from varying too far from ℓ0.

Gibbs covariance kernel + exponential of four Gaussians (See section b.4.1, equa-
tion (b.73), section b.4.1.2.1 and equation (b.80).) This case is the most similar
to the approach in [395]. The covariance length scale is again equal to ℓ0 far
from the data but here is modified by the exponential of four Gaussians with
fixed, uniformly spaced centers between μ1 = 0 and μ4 = 1.1. The widths were
all fixed at 1.1/3 = 0.367.

se covariance kernel + beta-cdf input warping function (See equation (2.5), sec-
tion b.1, section b.4.2, section b.4.2.2 and equation (b.97).) This case is equiv-

3. The mtanh-based fit was not tested here as it works best on data which are expressed as a function of
ψn and hence does not need a zero slope constraint at the origin.
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Table 2.4: Nonstationary covariance kernels tested with synthetic data and the prior
distributions for their hyperparameters. The data are taken to be dimensionless, so
all hyperparameters are dimensionless.

Parameter Prior distribution

Gibbs covariance kernel + tanh covariance length scale function
σf 𝒰 (0, 10)
ℓ1 Gamma(13, 12) (m = 1, σ = 0.3)
ℓ2 Gamma(5.8, 9.7) (m = 0.5, σ = 0.25)
ℓw Exp(10) (m = 0, σ = 0.1)
x0 Gamma(402, 401) (m = 1, σ = 0.05)

Gibbs covariance kernel + exponential of one Gaussian
σf 𝒰 (0, 4)
ℓ0 Gamma(13, 12) (m = 1, σ = 0.3)
μ1 𝒰 (0, 1.1)
σ1 𝒰 (0, 2.2)
β1 𝒩 (0, 1)

Gibbs covariance kernel + exponential of four Gaussians
σf 𝒰 (0, 4)
ℓ0 Gamma(13, 12) (m = 1, σ = 0.3)
β1 𝒩 (0, 1)
β2 𝒩 (0, 1)
β3 𝒩 (0, 1)
β4 𝒩 (0, 1)

se covariance kernel + beta-cdf input warping function
σf 𝒰 (0, 40)
ℓ Gamma(13, 12) (m = 1, σ = 0.3)
α Gamma(2.6, 1.6) (m = 1, σ = 1)
β Exp(2) (m = 0, σ = 0.5)

se covariance kernel + 2-knot I-spline input warping function
σf 𝒰 (0, 10)
C1 𝒰 (10−3, 10)
C2 𝒰 (0, 10)
C3 𝒰 (0, 10)

se covariance kernel + 3-knot I-spline input warping function
σf 𝒰 (0, 10)
t2 𝒰 (0, 1.1)
C1 𝒰 (10−3, 10)
C2 𝒰 (0, 10)
C3 𝒰 (0, 10)
C4 𝒰 (0, 10)
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Table 2.5: Parameters used formcmc sampling of the hyperparameters of the various
nonstationary covariance kernels applied to synthetic data.

Case Proposal width, a Walkers Samples per walker Burn Thin

Gibbs+tanh 6 200 500 400 100
Gibbs+exp(1 Gaussian) 16 200 2000 1900 100
Gibbs+exp(4 Gaussians) 8 200 1500 1400 100
se+beta-cdf warp 8 200 500 400 100
se+2-knot I-spline warp 4 200 500 400 100
se+3-knot I-spline warp 8 200 1500 1400 100

alent to the approach in [396]. The inputs are warped using the cumulative
distribution function (cdf) of the beta distribution. The shape parameters α
and β have prior distributions which tend to favor α ≳ 1 and β < 1. This is
intended to compress the core and stretch the edge. The gamma and exponen-
tial distributions used were found to offer better control than the log-normal
prior distributions used in [396]. Before being passed to the beta-cdf warping
function the inputs are linearlymapped from the interval [0, 1.1] to the interval
[10−6, 1 − 10−6].

se covariance kernel + 2-knot I-spline input warping function (See equation (2.5),
section b.1, section b.4.2, section b.4.2.2 and equation (b.101).) This case warps
the inputs using cubic (d = 3) I-spline basis functions with internal knots at
x = 0 and x = 1.1. There is a total of three spline coefficients Ci. The uniform
prior distributions were chosen to keep the value of the effective covariance
length scale near one. When finding the map estimate, C1 tended to get stuck
in a non-physical mode at C1 = 0, so the prior distribution was modified to
exclude this point. The covariance length scale of the underlying se covariance
kernel was held fixed at ℓ = 1 because the effective covariance length scale is
entirely determined by the spline coefficients.

se covariance kernel + 3-knot I-spline input warping function (See equation (2.5),
section b.1, section b.4.2, section b.4.2.2 and equation (b.101).) This case is the
same as above but with an additional internal knot whose position t2 is a free
hyperparameter.

The Gibbs covariance kernel was also tested with covariance length scale functions
consisting of several B-spline basis functions (section b.4.1.2.2, equation (b.87)) but
the non-informative priors used were insufficient to deliver a credible fit, so the
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results are not shown here.
Plots of the results of the two most promising fits are given in figure 2.16 and

figure 2.17, plots of the other fits are given in figure a.1 through figure a.4. A plot of
the root-mean-square (rms) error and estimated uncertainty in the fits is given in
figure 2.18. Plots of the posterior distributions for the hyperparameters are given in
figure a.5 through figure a.10 and summary statistics for the posterior distributions
for the hyperparameters are given in table a.1.

As indicated by figure 2.18, the Gibbs covariance kernel with tanh covariance
length scale function used for the bulk of this thesis delivers the most accurate rms
uncertainty estimates and nearly the smallest actual rms error when evaluated using
mcmc. Also of note is the se covariance kernel with 3-knot I-spline input warping
function. This covariance kernel delivered the best rms error on y and second-best
rms error on dy/dx. Its mean effective covariance length scale function for this case
(shown in figure 2.17) has a particularly appealing interpretation: there is a moderate
covariance length scale in the core, where the fit needs to change somewhat rapidly
to satisfy the zero-slope constraint at the magnetic axis. Then there is a region of
long covariance length scale just outside of midradius, corresponding to the region
where the profile is mostly flat. Finally, there is a region at the edge with very short
covariance length scale in order to accommodate the rapid change at the edge. It is
possible that this covariance kernel can be made more useful through appropriate
selection of the prior distribution for the hyperparameters.

2.5 Application of Gaussian process regression to Alcator
C-Mod profiles

2.5.1 Basic fit4

This section and section 2.6 will focus on data from Alcator C-Mod [397] shot num-
ber 1101014006, an L-mode discharge with Ip = 800 kA, BT = 5.4 T and 1MW of ion
cyclotron range of frequencies (icrf) heating power. This shot was chosen because it
was used for previous impurity transport and gyrokinetic validation work [18, 19, 55],
and the impurity transport coefficient profiles will be re-analyzed using the profiles
obtained in this section in section 2.6 and chapter 3. In order to avoid H-mode, this
discharge was operated in the upper single null configuration such that the grad-B
drift was away from the active x-point. Under these conditions, on-axis parame-

4. This is an updated version of the analysis originally presented in [305]. The analysis has been revised
to be consistent with the current best practices for profile fitting, which have evolved since that paper
was written.
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Figure 2.16: Synthetic data and fits performed using the Gibbs covariance ker-
nel with tanh covariance length scale function. The true curve is shown as the
black dashed line, the synthetic data as the green data points, the map estimate as
the red dash-dot line and the mcmc estimate as the blue solid line. The effective
input warping function w was computed from equation (b.94). The warped pro-
file in the bottom row shows the result of plotting the true curve (black dashed
line) and the mean of the mcmc estimate (blue solid line) as a function of the
mean of the mcmc estimate for w. The effective warping function slightly stretches
out the edge to make the data appear stationary. This figure was produced using
synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure 2.17: Synthetic data and fits performed using the se covariance kernel with
3-knot I-spline input warping function. This case is comparable to the Gibbs + tanh
case in terms of goodness-of-fit. The effective length scale function ℓ was computed
from equation (b.93). The effective length scale function from the mcmc estimate
has a particularly nice interpretation: it is moderate in the core where the profile
needs to roll over to accommodate the zero-slope constraint, goes to a high value
where the profile levels out just outside of midradius, then gets very short to fit the
edge. This case also shows the most profound effect of the warping of any of the
cases tested: the core has been visibly compressed and the edge stretched. This
figure was produced using synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure 2.18: Root-mean-square errors and uncertainty estimates in the fits to syn-
thetic data using various nonstationary covariance kernels. The “rms error” is
as given in equation (2.71) and the “rms σ” is as given in equation (2.72). The
Gibbs covariance kernel with tanh covariance length scale function delivered the
most accurate uncertainty estimates for both y and dy/dx when evaluated using
mcmc. The se covariance kernel with 3-knot I-spline input overestimated the er-
rors in both y and dy/dx when evaluated with mcmc. All of the other configu-
rations tested dramatically underestimated the uncertainty in the gradient with
the se covariance kernel with beta-cdf input warping function showing particu-
larly abysmal performance on both y and dy/dx. This figure was produced using
synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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ters of ne,0 = 1.5 × 1020 m−3 and Te,0 = 2.5 keV were obtained over a steady period
around 0.4 s long. In this section, we analyze the background ne and Te profiles
from this L-mode using Gaussian process regression and then proceed to obtain
profiles of the inverse gradient scale lengths with statistically rigorous uncertainty
estimates. Having valid estimates of these uncertainties is critical for comparing
to gyrokinetic codes, and the Gaussian process framework makes propagating the
uncertainty in the profiles through the analysis code to determine the experimental
impurity transport coefficients very efficient, as is demonstrated in section 2.6 and
section 3.6.5.

Alcator C-Mod has an extensive diagnostic suite which is described in [398].
Two Thomson scattering (ts) systems are used to measure the ne, Te profiles in the
core and the edge (core ts (cts) and edge ts (ets)), and three separate electron
cyclotron emission (ece) systems (two grating polychromators (gpc and gpc2) and
a high-resolution heterodyne system (frcece [399])) are used to further constrain
the core Te profile. The equilibrium shape and diagnostic locations are shown
in figure 2.19. In addition to extensive bench calibrations [400], the ts density
measurements are cross-calibrated with the ece measurements and a multichannel
two-color far-infrared interferometer (tci). During the stationary period of the
discharge the ne and Te profiles were fairly constant with the exception of sawtooth
oscillations. This study is concerned primarily with obtaining sawtooth-averaged
estimates of transport in the steady state period, so all signals were averaged over the
0.4 s period from 1.365 s ≤ t ≤ 0.965 s. The mean and standard deviation of the ts
measurements were weighted according to the diagnostic uncertainty estimates. This
had the effect of reducing the influence of noisy/outlying data points, particularly in
the edge. The diagnostic uncertainty estimates for the ece measurements are not as
detailed as those of ts, so conventional (unweighted) estimators were used for the
sample mean and standard deviation of the ece diagnostics. In all cases, histograms
and probability (“Q-Q”) plots [401] were examined to verify the suitability of the
assumption that the noise is approximately Gaussian. Note that while horizontal
error bars are shown in figure 2.20 to give a representation of the variability in
the equilibrium mapping, these uncertainties were not included in the analysis. In
general, these error bars are smaller than the width of a given data point as shown
in these figures. This coupled with the shallow slope throughout the core means
that uncertainties in the independent variable are only likely to play a significant
role in the edge (where the profile gets much steeper), and so should not affect the
calculation of core transport in the present chapter. Furthermore, the uncertainty
in the diagnostic mapping is expected to be dominated by systematic effects, but no
attempt was made to quantify these effects. Refer to section 2.4.2 for a discussion of
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Figure 2.19: Magnetic equilibrium reconstruction and diagnostic locations for
Alcator C-Mod shot 1101014006, the L-mode shot used to demonstrate the impurity
transport analysis. In the legend, “cts” is the core Thomson scattering system;
“ets” is the edge Thomson scattering system; and “gpc,” “gpc2” and “frcece” are
the three electron cyclotron emission diagnostics. This figure was produced using
make_diagnostic_figure.py.

the effect of scatter in the equilibrium mapping on the fit to synthetic data.
The Gibbs covariance kernel given in equation (b.73) with the hyperbolic tangent

covariance length scale function given in equation (b.78) was used to smooth both
the temperature and density profiles expressed as functions of normalized outboard
midplane minor radius r/a = (R − R0)/a. The prior distributions for the hyperpa-
rameters used for the temperature and density profiles are given in table 2.6. The
uniform prior distribution for σf was selected to keep the mcmc sampler away from
unphysical values while still keeping the information content of the prior distribution
weak. Uniform prior distributions were tested for the other hyperparameters, but

https://github.com/markchil/thesiscode/blob/master/make_diagnostic_figure.py
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Table 2.6: Prior distributions used for the hyperparameters of the Gibbs covariance
kernel with tanh covariance length scale function when fitting Alcator C-Mod shot
1101014006. For the gamma and exponential distributions the mode m and the
standard deviation σ are also given.

Quantity σf ℓ1 ℓ2 ℓw x0
ne 𝒰 (0, 30 × 1020 m−3) Gamma(11, 10) Gamma(6, 10) Exp(10) Gamma(203, 200)

m = 1, m = 0.5, m = 0, m = 1.01,
σ = 0.33 σ = 0.24 σ = 0.1 σ = 0.071

Te 𝒰 (0, 30 keV) Gamma(11, 10) Gamma(6, 10) Exp(10) Gamma(203, 200)
m = 1, m = 0.5, m = 0, m = 1.01,
σ = 0.33 σ = 0.24 σ = 0.1 σ = 0.071

were found to occasionally let the mcmc sampler stray into unphysical regions of
the hyperparameter space. As such, the remaining prior distributions were selected
to be more informative while still giving the problem enough flexibility that the
inference is relatively insensitive to the specific details of the prior distribution:

• The gamma prior distribution for ℓ1 was selected to have a mode of 1 and to
favor core covariance length scales between 0.5 and 1.75.

• The gamma prior distribution for ℓ2 was selected to have a mode of 0.5 and
to favor edge covariance length scales between 0.25 and 1.

• The exponential prior distribution for ℓw was chosen to have a mean of 0.1
and to favor short transition widths.

• The gamma prior distribution for x0 was chosen to have a mode of 1.01 and to
favor transition locations close to the lcfs.

As mentioned in section 2.3.5, artificial “observations” can be added to the data
y to enforce symmetry and other constraints. A zero slope point at r/a = 0 was used
to impose a symmetry constraint at the magnetic axis. Value and slope constraints
were added outside of the approximate location of the limiter at midplane, r/a = 1.1.
These constraints are listed in table 2.7. Note that the constraints at the edge are
given with uncertainties. This is an advantage of this formulation in that it allows a
constraint to be specified as being approximate (in the sense of having a Gaussian
distribution), such that the data can drive the mean higher or lower at that location
if necessary.
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Table 2.7: Constraints imposed on the profile fits forAlcator C-Mod shot 1101014006
by the addition of artificial “observations.” The slope constraint at the magnetic axis
was set as a precise value, the edge values outside of the midplane location of the
limiter were set with the indicated ±1σ uncertainty.

Quantity r/a y y′

ne [1020 m−3] 0 — 0
[1.1, 1.2, 1.3, 1.4] 0.00 ± 0.01 0.0 ± 0.1

Te [keV] 0 — 0
[1.1, 1.2, 1.3, 1.4] 0.00 ± 0.01 0.0 ± 0.1

The map estimate was found using the sequential quadratic programming rou-
tine in SciPy [293, 402]. The optimizer was started at 24 points randomly distributed
in the parameter bounds in order to ensure the global maximum was found. The
map estimates of the hyperparameters are given in the third column of table 2.10,
and are shown as the red curves in figure 2.20.

Marginalization over the hyperparameters was carried out using the Python
package emcee [354] which implements the affine-invariant ensemble sampler de-
scribed in [353]. As described in section 2.3.6, this algorithm uses an ensemble of
many “walkers” that perform a random walk guided by the posterior distribution
for the hyperparameters. The end result is a collection of samples {θ(i)} for the
hyperparameters which can then be used to evaluate equation (2.45). An ensemble
of 200 such walkers was used to draw samples from the posterior distribution for
the hyperparameters as given in equation (2.39). Each walker was started at a point
randomly distributed according to the prior distribution of the hyperparameters.
For the ne profile each walker was run for 500 samples while the Te profile required
1000 samples to reach steady-state. Discarding (“burning”) the first 400 samples
from the ne chains and 900 samples from the Te chains was found to be more than
sufficient for the walkers to forget their initial states and settle into a steady-state
distribution equal to the posterior distribution. It was found that walkers could
get trapped in unphysical modes, so the width of the mcmc proposal distribution
was increased to a = 4 for the ne profile and a = 32 for the Te profile such that all
modes had acceptable mixing. The average fraction of proposed steps which were
accepted was 28% for ne and 6.7% for Te. The acceptance fraction for Te is somewhat
low as a result of having to increase the width of the proposal distribution to allow
the walkers to escape from unphysical modes. The autocorrelation times for the
unthinned chains for each parameter are given in table 2.8. This yielded far more
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Table 2.8: mcmc sampler autocorrelation times for each hyperparameter. This is
the number of steps required for the correlation between samples in a given chain
to decay significantly, and determines the effective sample size.

Quantity σf ℓ1 ℓ2 ℓw x0
ne 60 72 78 51 31
Te 88 80 69 91 64

Table 2.9: Median relative uncertainties over the region 0 ≤ r/a ≤ 1, given as
percentages. The mcmc estimate has a higher uncertainty than the map estimate
because it fully accounts for the uncertainty in the hyperparameters.

Quantity Technique y y′ a/Ly
ne spline 1.2 5.9 5.3

map 1.1 5.6 5.6
mcmc 1.2 6.9 7.0

Te spline 2.1 12 10
map 1.1 1.6 1.7
mcmc 1.2 4.2 4.5

samples than is necessary to obtain the uncertainty in the profiles, so the chains were
thinned by a factor of 100 before computing any profiles, which is longer than the
observed autocorrelation times and has the result of eliminating almost all of the
correlation between samples.

The fitted profiles are shown as the red and blue curves in figure 2.20, the bi-
variate and univariate marginal posterior distributions for the hyperparameters are
given in figure 2.21 and figure 2.22, and summary statistics for the posterior distri-
butions of the hyperparameters are given in table 2.10. The map and marginalized
mcmc estimates yielded very similar mean curves, but with substantially different
uncertainty estimates, particularly on T′

e and a/LTe
. These differences can be seen

in figure 2.20 and are summarized in table 2.9, which gives the median relative un-
certainties M[σy∗|y/μy∗|y] in the quantities of interest over the region 0 ≤ r/a ≤ 1.
The difference in the uncertainties on the gradient between the map and mcmc
results is very important for applications that are strongly sensitive to gradients: in
order to obtain credible estimates of gradients it is necessary to fully account for
any uncertainty in the hyperparameters by marginalizing them out using mcmc.
This situation has an analogue with the traditional use of splines: using the map esti-
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Table 2.10: Summary statistics for the posterior distributions of the hyperparame-
ters of the Gibbs covariance kernel with tanh covariance length scale function for
Alcator C-Mod shot 1101014006. The “Mode” column is the map estimate.

Quantity Parameter [units] Mode Mean 95% interval

ne σf [1020 m−3] 0.826 1.41 [0.590 , 3.59 ]
ℓ1 0.992 1.08 [0.845 , 1.37 ]
ℓ2 0.489 0.532 [0.334 , 0.803 ]
ℓw 0.0171 0.0192 [0.00539, 0.0377]
x0 1.04 1.04 [1.03 , 1.05 ]

Te σf [keV] 1.42 2.32 [0.961 , 6.06 ]
ℓ1 0.637 0.649 [0.486 , 0.790 ]
ℓ2 0.541 0.547 [0.400 , 0.765 ]
ℓw 0.0142 0.0345 [0.00749, 0.137 ]
x0 1.01 1.01 [0.995 , 1.05 ]

mate is equivalent to simply picking one “best” location for the spline knots and/or
smoothing parameter, when this can in fact end up making the curve too restrictive
to properly capture the full uncertainty in the gradients. For the density profile, the
uncertainty from the spline fit is comparable to the map estimate, confirming this
hypothesis. For the temperature profile, however, the uncertainty of the spline fit is
in fact higher than the mcmc estimate. But, as shown in figure 2.20, the spline fits the
data less well than either the map or mcmc estimate, and so should not be trusted.
To get an estimate of the uncertainty on just the value of a quantity it appears to
be sufficient to use the much simpler map estimate for the hyperparameters. The
choice of which level of sophistication to use depends on how sensitive the end use
is to gradients; it is preferable to use the computationally cheap map approach of
handling the hyperparameters when possible.

2.5.2 Fit including tci data

In order to demonstrate the results of section 2.3.9, the density profile for a high-
density I-mode discharge (Alcator C-Mod shot 1120907032) was fit using the tci
data together with the core and edge Thomson scattering data. This discharge had
Ip = 1.1MA, BT = 5.8 T and 5MW of icrf heating power. The equilibrium shape
and diagnostic locations are shown in figure 2.23. The data were averaged over the
constant density time period 0.8 s ≤ t ≤ 0.9 s. The outermost point from the core
Thomson scattering system was not used because it was systematically much higher
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Figure 2.20: Data and results for the (a) ne and (b) Te profiles for Alcator C-Mod
shot 1101014006. The error bars are ±1σ . Horizontal error bars are, in general,
smaller than the width of the plotted points. On the fitted results, the inner dark
band is ±1σ and the lighter band is ±3σ . The result of the map estimate is shown as
the red dash-dot curve and the result of the marginalization with mcmc is shown as
the solid solid blue curve. In the top panel the spline samples used in the previous
work are shown as the black dashed curve; the spline results are not shown in the
other subplots. Note that the plot of a/L is cut off at r/a = 1 because the calculation
is not trusted outside of 0 ≤ r/a ≤ 1. All three curves for ne overlay very closely, and
the largest discrepancies are near the edge. For Te, however, there is a much more
pronounced discrepancy. This figure was produced using ne_profiletools.py

and Te_profiletools.py.

https://github.com/markchil/thesiscode/blob/master/ne_profiletools.py
https://github.com/markchil/thesiscode/blob/master/Te_profiletools.py
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Figure 2.21: Matrix of univariate (on the diagonal) and bivariate marginal poste-
rior distributions for the hyperparameters of the fit to the ne profile, as computed
with mcmc. These plots are essentially 1- and 2d projections of the 5d distribution
fΘ|Y (θ|y) given in equation (2.39). The bivariate marginal distributions yield infor-
mation on the correlation between hyperparameters: for instance, the tilted and
elongated shape of the bivariate marginal distribution between ℓ1 and ℓ2 means
that if the core covariance length scale is shorter, the edge covariance length scale
will also tend to be shorter. The bottom row of plots shows the sampler chains,
which give an indication as to whether or not the mcmc sampling has converged.
This figure was produced using ne_profiletools.py.

https://github.com/markchil/thesiscode/blob/master/ne_profiletools.py
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Figure 2.22: Univariate and bivariate marginal posterior distributions for the hy-
perparameters of the fit to the Te profile, as computed with mcmc, presented as in
figure 2.21. This figure was produced using Te_profiletools.py.

https://github.com/markchil/thesiscode/blob/master/Te_profiletools.py
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Figure 2.23: Magnetic equilibrium reconstruction and diagnostic locations for Al-
cator C-Mod shot 1120907032, including the locations of the eight tci chords in use.
This is the I-mode discharge used to demonstrate fitting the density profile with and
without the tci and cts diagnostics. Note that the tci chords were tightly spaced
in the center of the plasma for this shot, which makes reconstruction of the profile
from tci data alone impossible. In the legend, “tci” is the two-color interferome-
ter, “cts” is the core Thomson scattering system and “ets” is the edge Thomson
scattering system. This figure was produced using make_diagnostic_figure.py.

than the surrounding points in both the core and edge systems and caused the fit to
have an unphysical bump at the edge. One hundred equally spaced quadrature points
were used along each of the eight tci chords and the weights for quadrature points
which were in the shadow of the limiter were set to zero. The prior distribution for
the hyperparameters used is given in table 2.11. An exact zero slope constraint was
used at the magnetic axis and an edge constraint similar to that given in table 2.7 was
imposed by adding four points linearly spaced between rgh/a and 1.25rgh/a (where

https://github.com/markchil/thesiscode/blob/master/make_diagnostic_figure.py
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Table 2.11: Prior distributions for the hyperparameters used when assessing the
effect of including the tci data in the fit.

σf ℓ1 ℓ2 ℓw x0
𝒰 (0, 8.73 × 1020 m−3) Gamma(13, 12) Gamma(5.8, 9.7) Exp(10) Gamma(102, 101)

m = 1.0, m = 0.5, m = 0, m = 1.0,
σ = 0.3 σ = 0.25 σ = 0.1 σ = 0.1

rgh/a is the normalized midplane minor radius of the gh limiter) where the value
and slope were both required to be approximately zero. The hyperparameters were
sampled using an affine-invariant ensemble sampler with 200 walkers and a proposal
distribution width of a = 8. The sampler was run for 500 samples, the first 400
samples were discarded and the remaining samples were thinned by a factor of 100
before computing profiles.

Summary statistics for the posterior distributions with and without the tci and
core Thomson scattering data included are given in table 2.12, the fitted profiles
are given in figure 2.24 and the values on the tci chords are given in figure 2.25.
The marginal posterior distributions of the hyperparameters are given in figure a.11
through figure a.13. In the figures and tables, the case “cts+ets” refers to the use of
both the core and edge Thomson scattering data, “cts+ets+tci” refers to the use of
the core and edge Thomson scattering data together with the tci data and “ets+tci”
refers to the use of just the edge Thomson scattering data and the tci data.

Between the cts+ets case and the cts+ets+tci case the shape of the fit does
not change substantially outside of the error bars, nor do the posterior distributions
for the hyperparameters differ significantly. The relative uncertainties of the fits
are given in table 2.13. Including the tci data slightly reduces the uncertainty in
the values in the core, and has only a very minor effect on the uncertainty in the
gradients in the core: because the chords are all concentrated on the core and the
Thomson scattering diagnostic has already been cross-calibrated with the tci data,
these data do not provide a very strong constraint on the fit. It may be possible to
adjust the relative weights of the Thomson scattering data and the tci data in the fit
to obtain better agreement with the tci chords and hence make better use of the tci
data, but this has not yet been attempted.

A further improvement would be to perform an integrated analysis (see sec-
tion 2.3.10) of the Thomson scattering and tci data together in order to infer the
calibrations and profiles simultaneously with the Gaussian process acting as the
prior distribution for the profile shape, but this level of sophistication has not yet



2.5. Application of Gaussian process regression to Alcator C-Mod profiles 111

Table 2.12: Summary statistics for the posterior distributions of the hyperparameters
for the fits performed with and without tci/cts included. All three cases arrived at
very similar posterior distributions.

Case Parameter [units] Mode Mean 95% interval

cts+ets σf [1020 m−3] 1.07 1.75 [0.732 , 4.45 ]
ℓ1 1.30 1.39 [1.10 , 1.73 ]
ℓ2 0.464 0.529 [0.318 , 0.808 ]
ℓw 0.0494 0.0548 [0.0353, 0.0736]
x0 1.01 1.01 [0.989 , 1.02 ]

cts+ets+tci σf [1020 m−3] 1.09 1.75 [0.741 , 4.12 ]
ℓ1 1.30 1.40 [1.11 , 1.76 ]
ℓ2 0.477 0.529 [0.327 , 0.778 ]
ℓw 0.0416 0.0451 [0.0307, 0.0632]
x0 1.01 1.00 [0.989 , 1.02 ]

ets+tci σf [1020 m−3] 1.10 1.73 [0.736 , 4.14 ]
ℓ1 1.20 1.30 [0.969 , 1.66 ]
ℓ2 0.478 0.524 [0.310 , 0.809 ]
ℓw 0.0342 0.0420 [0.0244, 0.0569]
x0 1.01 1.01 [0.988 , 1.02 ]

Table 2.13: Median relative uncertainties over the region 0 ≤ r/a ≤ 1 for the
cases with and without tci/cts included in the fit. Relative uncertainties are given
as percentages. The uncertainties are higher when the core Thomson scattering
data are not present. The addition of the tci data to the core and edge Thomson
scattering data only decreases the uncertainty very slightly.

Case Method ne dne/d(r/a) a/Lne

cts+ets map 1.1 7.9 7.6
mcmc 1.3 18 18

cts+ets+tci map 0.95 7.8 7.5
mcmc 1.1 12 12

ets+tci map 1.4 9.0 8.4
mcmc 9.8 94 92
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Figure 2.24: Data and results for the ne profile with (green dashed) and without (red
solid) the tci data included, presented as in figure 2.20. Only the ±1σ uncertainty
envelopes are shown. The tci data only have a fairly weak effect on the fit in the
case where both core and edge Thomson scattering are available. The tci data
enable the profile to be roughly reconstructed in the case where the core Thomson
scattering data are absent (yellow dotted), despite the very tight chord spacing
shown in figure 2.23. The map (on the left) and mcmc (on the right) estimates have
very different uncertainty envelopes for the ets+tci case: while the tci data enable
the shape of the mean profile to be reconstructed in the absence of the cts data, the
uncertainties are much higher, especially for the gradient and gradient scale length.
This figure was produced using ne_TCI_test.py.

https://github.com/markchil/thesiscode/blob/master/ne_TCI_test.py


2.5. Application of Gaussian process regression to Alcator C-Mod profiles 113

0.80

0.85

0.90

0.95

1.00

1.05

nL
[1
02

0
m

−2
]

Predicted and observed tci values

nL01 nL02 nL03 nL04 nL05 nL06 nL07 nL08
channel

−0.04

−0.02

0.00

0.02

0.04

0.06

nL
−
nL

ob
s
[1
02

0
m

−2
]

tci residuals

measured
cts+ets

cts+ets+tci
ets+tci

Figure 2.25: Data and results for the values of line-integrated density on the var-
ious tci chords, where the fit is performed with (green points) and without (red
points) the tci data included. The upper figure shows the actual values, the lower
figure shows the residuals. Including the tci data brings the fitted values closer
to the observations, but does not arrive at complete agreement. It also makes the
uncertainties on the predicted tci values much smaller. When the core Thomson
scattering data are not present (yellow points) the fitted values lie even closer to the
observations. The persistent discrepancy on the innermost and outermost chords
may indicate calibration issues, or the need for finer structure in the very core of
the profile. Note that these points were all evaluated using the mcmc estimate; the
values and uncertainties on the map estimate were basically the same. This figure
was produced using ne_TCI_test.py.

https://github.com/markchil/thesiscode/blob/master/ne_TCI_test.py
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been attempted on Alcator C-Mod data. (Integrated analysis of Thomson scattering,
interferometer and soft x-ray data has been implemented on w7-as for single spatial
points [285, 372, 373, 375, 378], but the interferometer is simply used to set an upper
bound on the density. Integrated analysis of Thomson scattering, electron cyclotron
emission, interferometer and lithium ion beam emission spectroscopy data has been
implemented on asdex Upgrade [386, 388, 389], but the use of B-splines leads to
uncertainty envelopes which indicate that an unphysical degree of spatial variation
is permitted by the prior distribution. Integrated analysis of Thomson scattering,
interferometry, reflectometry and helium ion beam data has been implemented on
tj-ii [394]. Integrated analysis of Thomson scattering data and a single interferom-
eter chord has been implemented on mast [316]. Of these, only the mast analysis
uses a Gaussian process prior distribution.)

Another potential application of this analysis is to make use of shots where the
core Thomson scattering data are corrupted or otherwise unavailable but the edge
Thomson scattering and tci data are both available. In this case, gpr lets the edge
Thomson scattering data act as a constraint on the tci data, which would other-
wise not have enough information about the edge of the plasma to be successfully
inverted using conventional tomographic techniques [359]. This case corresponds
to the “ets+tci” case in the previous tables and figures. The rough shape of the core
profile is recovered, but obviously the fit is not ideal. This case exhibits a dramatic dif-
ference between the map and mcmc uncertainty estimates: for the map estimate the
uncertainties are slightly higher, which makes sense given that the local core Thom-
son scattering measurements are assumed to be a much stronger constraint than the
line-integrated tci measurements. But for the mcmc estimate the uncertainties are
much higher – the median relative uncertainty is as high as 94% for dne/d(r/a)! This
highlights the importance of using mcmc to fully capture the posterior uncertainty
when very little data are available. While this analysis demonstrates that combining
the tci data with the ets data allows reconstruction of the rough shape of the mean
curve, the uncertainties are so high as to limit the usefulness of this approach for
rigorous analysis. If more chords were available, or if the existing chords were moved
farther out in the plasma, more detail in the core could be inferred when the core
Thomson scattering data are not reliable.

2.5.3 Computing second derivatives to investigate rotation reversals

2.5.3.1 Motivation

Explaining the dramatic change of intrinsic rotation with slight changes in density is
an open question [26]: White et al. present a pair of discharges where the turbulent
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Figure 2.26: Toroidal rotation profiles for shots 1120221011 (red circles, hollow
rotation profile) and 1120221012 (blue triangles, peaked rotation profile). The data
shown cover 0.9 s ≤ t ≤ 1.2 s. This figure was produced using plot_rotation.py.

drive terms are essentially the same within error bars, the only noticeable difference
being that the electron density is slightly higher in one discharge. Despite this
apparent similarity, the toroidal rotation profile is dramatically different between the
two discharges: peaked and strongly co-current in the lower density case and hollow
and slightly counter-current on axis in the higher density case. The rotation profiles
for these shots are shown in figure 2.26, the electron density profiles are shown in
figure 2.28 and the electron temperature profiles are shown in figure 2.29.

Ida et al. [403] and the references therein discuss the connection between the
ion temperature gradient and the intrinsic toroidal rotation. Beyond this, there are
theoretical reasons to believe that the second derivative of the profiles plays a role in
momentum transport [404–414]. M. Barnes gave a particularly intuitive description
of two of the ways this can occur [410]:

1. The strength of the turbulence depends on the profile gradient. Therefore, the
second derivative of the profile corresponds to a gradient in the strength of the
turbulence. Consider two ensembles of trapped electrons which start from
the same place at the outboard midplane of an up-down symmetric plasma
which have opposite parallel velocities. Supposing the toroidal plasma current
is in the same direction as the toroidal magnetic field, the electrons for which
v∥ > 0 drift radially outwards when undergoing a banana orbit while the
electrons for which v∥ < 0 drift radially inwards (see figure 14.14 of [1] for

https://github.com/markchil/thesiscode/blob/master/plot_rotation.py
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an illustration). In the absence of turbulence (and ignoring other collisions),
the electrons all eventually return to the same poloidal location, forming a
pair of closed banana orbits. With turbulence of constant strength (i.e., the
second derivatives of the profiles are zero) the losses due to turbulence for
both populations of electrons are equal, and no net momentum transport
occurs. But if there is stronger turbulent transport on one side than on the
other then more of the electrons going one direction will be lost and there
will be net transport of momentum. Therefore, the second derivatives of the
plasma profiles must be non-zero for there to be net momentum transport.

2. When there are spatial gradients in the density and temperature profiles there
are diamagnetic corrections to the distribution function of the particles which
induce a diamagnetic flow. The strength of this flow depends on the first
derivatives of the density and temperature profiles. When there is no initial
rotation, this diamagnetic flow cancels with the E × B flow. But there can be
different diffusion coefficients for these two flows. So, if the second derivatives
of the profiles are non-zero, there will be a gradient in the diamagnetic flow
which can cause the diamagnetic flow to diffuse at a different rate than the
E × B flow, thereby creating a net diffusion of momentum.

2.5.3.2 Performing the fit

In the past it has been widely believed that it is impossible to test a hypothesis de-
pending on second derivatives because of how large the uncertainties are expected to
grow with each order of derivative. As noted in section 2.3.5, derivatives of arbitrary
order and their uncertainties can be predicted when using gpr. The profile data
from the same shots used in [26] were re-fit using gpr and the second derivatives
and their uncertainties were computed. The shots of interest are Alcator C-Mod
shots 1120221011 (higher density, hollow rotation profile) and 1120221012 (lower den-
sity, peaked rotation profile). Both of these L-mode discharges had Ip = 800 kA,
BT = 5.4 T and were heated with 1.2MW of icrf heating power. For each shot the
data were averaged over the period 0.9 s ≤ t ≤ 1.2 s. Data from the core and edge
Thomson scattering systems were used for both the ne and Te profiles. Note that
the innermost Thomson scattering point was removed from the fit because it was
observed to exhibit a systematically low density throughout the run day and hence
caused an unphysical dip in the core density profile fit. In addition, the data from
two ece systems (gpc and gpc2) were used for the Te profiles. The equilibrium
shape and diagnostic locations are shown in figure 2.27. Only the data from inside
the lcfs were used in the fit, so a stationary squared exponential kernel was used.
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Figure 2.27: Magnetic equilibrium reconstruction and diagnostic locations for
Alcator C-Mod shots (a) 1120221011 and (b) 1120221012, the pair of discharges used
to investigate rotation reversals. In the legend, “cts” is the core Thomson scattering
system, “ets” is the edge Thomson scattering system, and “gpc” and “gpc2” are the
two grating polychromator electron cyclotron emission diagnostics. These figures
were produced using make_diagnostic_figure.py.

This eliminated the need for a constraint at the limiter, but the y′ = 0 constraint at
the magnetic axis was still used. Very simple uniform prior distributions were used
for the hyperparameters, which are given in table 2.14. In order to ensure a complete
accounting of the uncertainty, the hyperparameters were marginalized using mcmc
with an affine-invariant ensemble sampler [353, 354]. The sampler was run with 200
walkers for 600 samples, 200 samples were burned and the remaining samples were

https://github.com/markchil/thesiscode/blob/master/make_diagnostic_figure.py
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Table 2.14: Prior distributions used for the hyperparameters of the squared expo-
nential covariance kernel when fitting the rotation reversal data.

Quantity σf ℓ

ne 𝒰 (0, 50 × 1020 m−3) 𝒰 (0, 15)
Te 𝒰 (0, 50 keV) 𝒰 (0, 25)

thinned by a factor of 200. The width of the proposal distribution was kept at the
default a = 2. The computed profiles are given in figure 2.28 and figure 2.29, the
marginal posterior distributions for the hyperparameters are shown in figure a.14
and summary statistics for the posterior distributions of the hyperparameters are
given in table a.2. The posterior distributions for the hyperparameters are very
similar between the two shots for both ne and Te.

Figure 2.28 and figure 2.29 show the unnormalized second derivative profiles as
well as two possible normalizations:

a
L∇ne

=
ad2ne/dr2

dne/dr
(2.73)

a2d2ne/dr2

ne
. (2.74)

The first version was chosen by analogy with the gradient scale length, equation (2.1),
but is made useless in the core by the fact that the first derivative dne/dr must go
to zero on axis. Therefore, the second version, chosen purely from dimensional
analysis, is likely to be more useful in practice.

2.5.3.3 Quantifying the profile differences

In order to test theories which attempt to explain momentum transport in terms
of differences in the second derivatives it is necessary to have an objective way
of characterizing the difference between two profiles in the presence of very large,
overlapping uncertainty envelopes. One approach could be to apply multivariate
hypothesis testing as described in [415]. In this case, the test would be deciding
whether or not the data are sufficient to reject the null hypothesis that the mean
vectors are equal. This oversimplified choice between “mean vectors match” and
“mean vectors do not match” has been noted as a key shortcoming of frequentist
hypothesis testing [286]: what really matters is the probability of the profiles being
different enough to cause a change in the rotation profile. The Bayesian framework
allows a more useful test to be made: we can actually use the results of the gpr fit to
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Figure 2.28: Data and fitted ne profile for the two rotation reversal shots. Red circles
and solid curves are from shot 1120221011 (higher density, hollow rotation profile)
and blue triangles and dashed curves are from shot 1120221012 (lower density, hollow
rotation profile). For all curves, the dark band is ±1σ and the light band is ±3σ . The
subplots are: (a) the averaged data and the fitted core profiles, (b) the first derivative
of the profile, (c) the normalized inverse gradient scale length of the profile, (d) the
second derivative of the profile, (e) the inverse normalized gradient scale length of
the gradient (see equation (2.73)), and (f) the normalized second derivative (see
equation (2.74)). There is no significant difference in the first or second derivatives
between these two discharges. This figure was produced using ne_rotation.py.

https://github.com/markchil/thesiscode/blob/master/ne_rotation.py
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Figure 2.29: Data and fitted Te profile for the two rotation reversal shots, presented
as in figure 2.28. This figure was produced using Te_rotation.py.

quantify how likely is it that the profiles differ by a given amount. For a given pair
of quantities to compare y1, y2 we have y1 ∼ 𝒩 (μ1, σ21 ) and y2 ∼ 𝒩 (μ2, σ22 ). In this
context, y1 could be the second derivative at r/a = 0.5 of the hollow rotation case
and y2 could be the second derivative at r/a = 0.5 of the peaked rotation case. The
distribution for the difference of these two quantities is then

Δ = y1 − y2 ∼ 𝒩 (μ1 − μ2, σ21 + σ22 ). (2.75)

The probability that Δ is larger than some value c is then simply

P(Δ > c) = 1 − FΔ(c) = 1 − Φ(
c − (μ1 − μ2)

σ21 + σ22 ) , (2.76)

https://github.com/markchil/thesiscode/blob/master/Te_rotation.py
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and the probability that Δ is less than some value −c is

P(Δ < −c) = FΔ(−c) = Φ(
−c − (μ1 − μ2)

σ21 + σ22 ) , (2.77)

where FΔ(Δ) is the cdf of Δ and Φ(x) is the cdf of the standard normal distribution.
Combining these gives

P(|Δ| > c) = P(Δ > c) + P(Δ < −c) = 1 − FΔ(c) + FΔ(−c). (2.78)

Once quantitative theoretical predictions are available for these shots, figure 2.30 will
enable them to be checked against these results. Specifically, for a given change in the
(normalized or non-normalized) second derivative profile needed to account for the
change in rotation, the probability that the profiles differ by at least this much can
be read off the figure. Of particular interest to the present discussion are the values
of P(Δ > 0), which can be interpreted as P(y1 > y2). In all of the normalized cases
this probability is only about 60%, which is generally not taken to be statistically
significant: therefore the present data do not appear to support any claims that there
are substantial differences between the second derivative profiles, thus ruling out
subtle differences in the profile shape as the cause of the dramatic change in rotation
between these two shots.

2.5.4 2d fitting of sawtooth-free data

Because gptools includes support for data of arbitrary dimension, it is possible to
fit profile data as a function of space and time. Handling sawteeth will require the
development of a very complicated covariance kernel to represent the fast, periodic
variations in the signal, a task which is not in the scope of this thesis. Therefore, a
sawtooth-suppressed discharge with lower hybrid current drive (lhcd) was used
to demonstrate this capability.5 Alcator C-Mod shot 1110329013 is free of sawtooth
activity over the period 1.0 s ≤ t ≤ 1.4 s. This shot has Ip = 430 kA, BT = 5.4 T, with
800 kWof lhcd power. Only theTe data from the core and edge Thomson scattering
systemswere used, as the ece systemswere contaminatedwith non-thermal emission
and hence cannot deliver a reliable temperature measurement. The equilibrium
shape and diagnostic locations are given in figure 2.31. The fit was performed using
a 2d se covariance kernel. A zero slope constraint was imposed at the magnetic
axis by adding an artificial dTe/d(r/a) = 0 point at r/a = 0 for each Thomson time
point. An edge constraint similar to what was used for the 1d fits was imposed by

5. Refer to section 5.4.3 of [297] for an example of a 1d gpr fit with a covariance kernel very similar to
what would be needed to perform a time-dependent fit of sawtoothing data.
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Figure 2.30: Probabilities of various levels of difference between the second deriva-
tives of the ne (left) and Te (right) profiles at r/a = 0.5. The threshold c has units of
1020 m−3 for plot (a), keV for plot (d) and is dimensionless for the others. Similar
figures can be made at any value of r/a; r/a = 0.5 was selected because it is in a
region with appreciable rotation change but is away from the pathologies which
a/L𝛁ne

and a/L𝛁Te
experience at the origin. The blue solid lines show the probability

that the absolute value of the difference exceeds the threshold c, and so must go to
one as c goes to zero. The green dashed lines show the probability that the difference
is greater than c (i.e., the hollow rotation case has a higher value than the peaked
rotation case), and the red dotted lines show the probability that the difference is
less than −c (i.e., the hollow rotation case has a lower value than the peaked rotation
case). These figures were produced using ne_rotation.py and Te_rotation.py.

https://github.com/markchil/thesiscode/blob/master/ne_rotation.py
https://github.com/markchil/thesiscode/blob/master/Te_rotation.py
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Figure 2.31: Magnetic equilibrium reconstruction and diagnostic locations for
Alcator C-Mod shot 1110329013, the sawtooth-suppressed lower hybrid current
drive shot used to demonstrate 2d fitting of profile data. In the legend, “cts” is the
core Thomson scattering system and “ets” is the edge Thomson scattering system.
This figure was produced using make_diagnostic_figure.py.

adding four artificial approximately zero slope and value points at and just outside
of the limiter location at each Thomson time point. It was discovered that the
fit tended to end up with an unreasonably short spatial covariance length scale,
and that nearly singular covariance matrices would tend to occur. This seemed to
indicate that the diagnostic uncertainty estimates were not an adequate measure of
the actual noise, so an additional homoscedastic noise component σ2n was added to
the diagnostic uncertainty estimates. The noise level σn was inferred along with the
hyperparameters of the covariance kernel. This was not necessary in the other fits
presented previously in this section because those fits used the sample mean and
standard deviation over long time windows to compute the value and uncertainty of

https://github.com/markchil/thesiscode/blob/master/make_diagnostic_figure.py
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Table 2.15: Prior distributions for the hyperparameters used to fit the sawtooth-free
data with 1d and 2d se covariance kernels and additional homoscedastic noise.

Hyperparameter [units] 2d fit 1d fit

σf [keV] 𝒰 (0, 10 keV) 𝒰 (0, 10 keV)
temporal ℓt [s] 𝒰 (0, 100 s) N/A
spatial ℓ Gamma(27, 26) Gamma(27, 26)

m = 1.0, σ = 0.2 m = 1.0, σ = 0.2
σn [keV] 𝒰 (0, 1 keV) 𝒰 (0, 1 keV)

a given channel, and therefore were not fully reliant on the diagnostic uncertainty
estimates. In addition, the prior distribution for the spatial covariance scale length
wasmade stronger thanwhat was used for the fits presented previously in this section.
The prior distributions used for the hyperparameters are given in table 2.15.

To perform the inference, an affine-invariant ensemble sampler with 200 walkers
and a proposal distribution width of a = 4 was run for 250 samples, the first 150
samples were burned and the remaining samples were thinned by a factor of 100.
The resulting posterior distribution for the hyperparameters is shown in figure a.15,
summary statistics of the posterior distribution are given in table 2.16 and the profiles
are given in figure 2.32. Notice that when the temporal covariance length scale is
longer than about 1 s the data over this 0.4 s window are so strongly correlated that all
time variation is fairly negligible. Therefore, the fact that the posterior distribution
for the temporal covariance length scale shown in figure a.15 and summarized in
table 2.16 is concentrated entirely at large values indicates that the time variation over
this portion of the discharge is very small. The distribution is not very informative
about the temporal covariance length scale as 0.4 s of data is insufficient to decide
between such long covariance length scales.

In order to make the effect of including all of the data in a bivariate fit more clear,
the profile was evaluated at several time slices and compared to a fit using a 1d se
covariance function. For the 1d fits, no averaging was performed as just a single
time slice’s points were used. The diagnostic uncertainty estimates were used, and
the fit was again allowed to infer additional homoscedastic noise. The profiles are
given in figure 2.33 and the posterior distributions for the hyperparameters are given
in figure a.16. The 2d fit infers extra structure in the gradient around midradius,
and generally has a smaller uncertainty than the 1d fit. The relative uncertainties of
the various fits are given in table 2.17. The tighter uncertainty envelopes and extra
structure in the 2d fit make sense because the 2d fit incorporates far more data and,
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Figure 2.32: Data and 2d fitted profile for the sawtooth-free temperature data. In all
three figures, the surfaces are colored red for positive values and blue for negative
values. In (a) the blue points are the core Thomson scattering system and the green
points are the edge Thomson scattering system. These figures were produced using
LH_2d.py.

https://github.com/markchil/thesiscode/blob/master/LH_2d.py
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as long as the assumption of a Gaussian process prior distribution for both the spatial
and temporal variation is appropriate, all of the data can contribute to constraining
the fit at a given time slice.

The difference between the uncertainties and structure of the 1d and 2d fits raises
an interesting question regarding how to average the data over steady-state time
windows like this. To this end, three ways of combining the multiple time slices
were tested. First, all of the points from 1.0 s ≤ t ≤ 1.4 s were kept in the fit. This
ends up being about as computationally expensive as performing the 2d fit, and
corresponds to the assumption that all of the time slices are perfectly correlated
(consistent with the very long temporal covariance length scales inferred). Two
types of averaging6 were then tested: first, the weighted mean (where the diagnostic
uncertainty estimates were used to determine the weights) of all of the data points in
a given channel was used for the value and the weighted sample standard deviation
was used for the uncertainty estimate. Second, the weighted mean was used and the
uncertainty in this mean was computed using the error propagation equation and
the diagnostic uncertainty estimates. As discussed in section f.5, these represent two
possible interpretations of the data and fit. The first will arrive at a finite uncertainty
estimate σ for a given channel as more and more data are added, and is consistent
with the assumption that there is some fundamental variability in Te which the
uncertainty estimate of the fit should represent. The second approach will go to
zero as the number of samples increases, as it is the uncertainty in the mean which
goes like σ/√n, where σ is the standard deviation in a given channel and n is the
number of samples. This is consistent with the assumption that the only variation
from time slice to time slice is from Gaussian noise in the measurement, and hence
the variation can be averaged out through the accumulation of sufficient samples.

The fitted curves are given in figure 2.34 and the posterior distributions for the
hyperparameters inferred are given in figure a.17. Interestingly, while the second
averaging approach (referred to as “averaged, σ/√n” in table 2.16 and table 2.17)
delivers a slightly tighter uncertainty envelope on Te than the first approach (referred
to as “averaged” in the tables), it has roughly the same envelopes for adTe/dr and
a/LTe

. Table 2.16 indicates that this may be a result of the fact that a higher level of
additional homoscedastic noise σn was inferred for the σ/√n case. The fact that the
inference seems to require a higher level of homoscedastic noise for this case again
indicates that the diagnostic error bars have been underestimated.

6. Refer to section f.5 for more details on averaging schemes.
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Table 2.16: Summary statistics for the posterior distributions of the hyperparameters
for the 1- and 2d fits performed on the sawtooth free data.

Case Parameter [units] Mode Mean 95% interval

2d se σf [keV] 1.39 2.37 [ 0.896 , 6.38 ]
temporal ℓt [s] 64.1 60.7 [15.9 , 97.9 ]
spatial ℓ 0.413 0.436 [ 0.360 , 0.531 ]
σn [keV] 0.0283 0.0282 [ 0.0221 , 0.0347]

1d se, σf [keV] 1.36 3.84 [ 1.02 , 9.17 ]
all points spatial ℓ 0.403 0.768 [ 0.383 , 1.10 ]

σn [keV] 0.0648 0.0672 [ 0.0582 , 0.0769]

1d se, σf [keV] 1.56 3.21 [ 0.985 , 8.43 ]
averaged spatial ℓ 0.696 0.780 [ 0.573 , 1.02 ]

σn [keV] 5.92 × 10−24 0.0101 [ 0.000390, 0.0379]

1d se, σf [keV] 1.68 3.38 [ 1.03 , 8.53 ]
averaged, spatial ℓ 0.718 0.801 [ 0.599 , 1.04 ]
σ/√n σn [keV] 0.0919 0.0965 [ 0.0713 , 0.131 ]

1d se, σf [keV] 1.45 3.20 [ 0.973 , 8.42 ]
t = 1.1 s spatial ℓ 0.688 0.787 [ 0.580 , 1.04 ]

σn [keV] 0.0197 0.0351 [ 0.00265 , 0.0905]

1d se, σf [keV] 1.70 3.59 [ 1.07 , 8.74 ]
t = 1.2 s spatial ℓ 0.689 0.783 [ 0.582 , 1.03 ]

σn [keV] 0.0456 0.0547 [ 0.0236 , 0.102 ]

1d se, σf [keV] 1.63 3.41 [ 1.05 , 8.53 ]
t = 1.3 s spatial ℓ 0.684 0.763 [ 0.567 , 1.01 ]

σn [keV] 2.16 × 10−9 0.00966 [ 0.000200, 0.0388]

1d se, σf [keV] 1.27 3.07 [ 0.817 , 8.31 ]
t = 1.4 s spatial ℓ 0.675 0.776 [ 0.522 , 1.04 ]

σn [keV] 0 0.0412 [ 0.000639, 0.174 ]
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Figure 2.34: Data and fitted curves subject to three ways of combining the data from
multiple time slices. Only the ±1σ envelopes are shown. The schemes shown are as
follows: “all points” (blue solid) refers to simply including all of the time points in
the 1d Gaussian process, and lets the Gaussian process do the averaging. Note that
there aremany outliers at the edge which go away with averaging. “Averaged” (green
dash-dot) uses the weighted mean and weighted standard deviation within a given
channel. “Averaged, σ/√n” (black dotted) uses the weighted mean and computes
the uncertainty in the mean through uncertainty propagation. Since both of the
averaging schemes use the same weighted mean, the green and black data points
overlay, with the difference being that the “averaged, σ/√n” scheme (black points)
produces tighter error bars than the “averaged” scheme (green points). Also shown
is the 2d fit at t = 1 s (red dashed). All three of the averaging schemes produce
comparable results, whereas the 2d fit infers more structure in the gradient. These
figures were produced using LH_2d.py.

https://github.com/markchil/thesiscode/blob/master/LH_2d.py
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Table 2.17: Median relative uncertainties over the region 0 ≤ r/a ≤ 1 for the 1- and
2d fits performed on the sawtooth-free data. Relative uncertainties are given as
percentages.

t [s] Case Te dTe/d(r/a) a/LTe

[1.0, 1.4] all points 1.72 5.02 5.05
averaged 3.96 6.09 6.05
averaged, σ/√n 3.01 6.35 6.74

1.1 2d se 1.49 4.27 4.32
1d se 5.92 9.60 9.63

1.2 2d se 1.45 4.25 4.26
1d se 6.88 10.5 8.81

1.3 2d se 1.53 4.27 4.33
1d se 6.68 9.14 7.65

1.4 2d se 1.73 4.32 4.50
1d se 8.98 13.9 19.2

2.5.5 Fitting of pedestal data using the mtanh mean function

The pedestals of H- and I-mode plasmas are often characterized using a modified
hyperbolic tangent function [416, 417]:

z =
x0 − x
δ

(2.79)

mtanh(α, z) = (1 + αz)ez − e−z

ez + e−z (2.80)

y = h + b
2

+ h − b
2

mtanh(α, z) = h + b
2

+ h − b
2

(1 + αz)ez − e−z

ez + e−z , (2.81)

where y is the quantity to be fit, x is the coordinate the fit is to be performed against,
x0 is the midpoint of the pedestal, δ is the half-width of the pedestal, α sets the slope
of the profile inside of the pedestal, h is the height of the pedestal and b is the foot of
the pedestal. The gradient of the profile is [417]:

dy
dx

= −h − b
2δ

1 + α(1 + 2z + e2z)/4
cosh2 z

. (2.82)

Using the full formulation of gpr given in section 2.3.9 it is possible to include this
mean function to introduce non-stationarity to allow the edge to be fit simultaneously
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with the core. This is often conceptualized as using a zero-mean Gaussian process
to fit the residuals from fitting the mean curve to the data, though it will be shown
in this section that care is required when interpreting the parameters of the mean
function obtained in this manner.

To demonstrate this capability, the density profile of an H-mode plasma (Alcator
C-Mod shot 1110201035) was fit using an se covariance kernel with the mtanh mean
function7 given in equation (2.81). In addition, the fit was repeated using the Gibbs
covariance kernel from equation (b.73) with the tanh covariance length scale function
from equation (b.78), and using the mtanh function alone. Note that gptools can
be used for Bayesian nonlinear least-squares fitting: when k(xi, xj) = 0 and T = I,
equation (2.61) reduces to

ln fY|Θ = −1
2(y − m(X|θ))

TΣ−1
n (y − m(X|θ)) − 1

2
ln |Σn| − n

2
ln 2π, (2.83)

which is simply the log-likelihood for a multivariate normal 𝒩(m(X|θ),Σn) with
(potentially correlated and/or heteroscedastic) observational noise Σn and mean
function m(x|θ) – exactly the likelihood distribution used for fitting of the function
m(x|θ) to the data y(X).

In order to align the temperature pedestal with the lcfs, the edge Thomson
scattering points were shifted down byΔZ = −13mm such thatTe(ψn = 1) ≈ 100 eV
[418]. The data from both the core and edge Thomson scattering systems were
averaged over the constant-density period 1.35 s ≤ t ≤ 1.5 s. Over this time window
the shot had Ip = 500 kA, BT = 5.4 T and was heated with 4MW of icrf power.
The equilibrium shape and diagnostic locations are shown in figure 2.35. The fit
was performed as a function of normalized poloidal flux ψn in order to obtain the
pedestal half-width δ in terms of the conventional units of normalized poloidal
flux. In line with the discussion of section 2.3.5.1, a zero-slope constraint was not
included at ψn = 0. Furthermore, because the mtanh fit includes a parameter
for the pedestal foot, constraints on the value and slope at the limiter were only
included for the fit using the Gibbs covariance kernel with tanh covariance length
scale function. All of the fits were performed using mcmc, but different sampler
proposal distribution widths were found to be necessary for each fit. The parameters
used for the mcmc samplers are given in table 2.18 and the prior distributions used
for the parameters of the mtanh mean function and the hyperparameters of the
covariance kernels are given in table 2.19. The fits are shown in figure 2.36, plots
of the posterior distributions for the parameters and hyperparameters are given in
figure 2.37 through figure 2.39, summary statistics for the posterior distributions

7. Note that in the rest of this section the term “mtanh mean function” will be taken to refer to the full
profile function y(z(x)) given in equation (2.81), not the mtanh(α, z(x)) function itself.
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Figure 2.35: Magnetic equilibrium reconstruction and diagnostic locations for
Alcator C-Mod shot 1110201035, the H-mode shot used to demonstrate fitting with
and without the mtanh mean function. In the legend, “cts” refers to the core
Thomson scattering system and “ets” refers to the edge Thomson scattering system.
This figure was produced using make_diagnostic_figure.py.

for the parameters and hyperparameters are given in table 2.20 and summaries of
the uncertainties in the fits are given in table 2.21. As illustrated in table 2.21 and
figure 2.36, the fits with the Gibbs covariance kernel with tanh covariance length scale
function and the se covariance kernel with mtanh mean function both fit the data
quite well and give comparable uncertainty estimates. While the mtanh function on
its own fits the pedestal well, it is too inflexible to fit the core data well. This leads to
both a poor fit to the core data as well as an underestimation of the uncertainty in
the fit.

The results given in table 2.20, figure 2.38 and figure 2.39 indicate one cautionary
note about this technique: while all three techniques yielded acceptable fits to the

https://github.com/markchil/thesiscode/blob/master/make_diagnostic_figure.py
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Figure 2.36: Plots of the core and pedestal portions of the fits using the Gibbs covari-
ance kernel with tanh covariance length scale function (red solid), the se covariance
kernel with mtanh mean function (blue dashed), and only the mtanh function (green
dash-dot). To make the plot more legible, only the ±1σ uncertainty envelopes are
shown. In each column, the second panel from the top shows the residual from the
fit using the se covariance kernel with the mtanh mean function. The residual and
the mean function are strongly correlated, which is why the uncertainty envelopes
on the blue se+mtanh curves are so much smaller than the uncertainty envelopes
on the black mean function and gp residual curves. All three cases provide similar
fits, though the fit using only the mtanh function misses a considerable amount of
structure in the core, as would be expected given its simplicity in that region. This
figure was produced using ne_mtanh.py.

https://github.com/markchil/thesiscode/blob/master/ne_mtanh.py
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Figure 2.37: Marginal posterior distributions for the hyperparameters of the Gibbs
covariance kernel with tanh covariance length scale function for the fit to the H-
mode density profile. This figure was produced using ne_mtanh.py.

https://github.com/markchil/thesiscode/blob/master/ne_mtanh.py
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Figure 2.38: Marginal posterior distributions for the parameters of the mtanh mean
function and the hyperparameters of the se covariance kernel for the fit to the
H-mode density profile. When the Gaussian process with se covariance kernel is
present to fit for the residuals, the pedestal foot b is completely unconstrained and
has a marginal posterior distribution which very strongly resembles the uniform
prior distribution used. In this case h and b are positively correlated. This figure
was produced using ne_mtanh.py.

https://github.com/markchil/thesiscode/blob/master/ne_mtanh.py
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Figure 2.39: Marginal posterior distributions for the parameters of the mtanh func-
tion fit to the H-mode density profile. Without the Gaussian process to fit the
residuals, the pedestal foot b is now much better constrained by the data, and the
clear positive correlation with h seen in figure 2.38 is no longer evident. Note that
the posterior distribution for b is clearly non-Gaussian, which means that conven-
tional fitting techniques which estimate the uncertainties in the parameters from
the inverse Hessian of the log-likelihood may underestimate the uncertainty in b.
This figure was produced using ne_mtanh.py.

https://github.com/markchil/thesiscode/blob/master/ne_mtanh.py
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Table 2.18: Parameters of the affine-invariant ensemble samplers used to fit the H-
mode ne profile with and without the mtanh mean function. “Burn” is the number
of samples discarded from the start of each chain, “Thin” is the factor by which each
chain’s remaining samples were thinned before computing profiles.

Case Proposal width, a Walkers Samples per walker Burn Thin

Gibbs+tanh 16 200 1000 800 100
se+mtanh 4 200 1000 800 100
mtanh only 16 200 1000 800 100

Table 2.19: Prior distributions for the parameters and hyperparameters of the mean
functions and covariance kernels used when fitting the H-mode ne profile.

(Hyper)parameter Prior distribution

Signal variance, σf 𝒰 (0, 11.1 × 1020 m−3) for Gibbs+tanh,
𝒰 (0, 30 × 1020 m−3) for se+mtanh

Core covariance length scale, ℓ, ℓ1 Gamma(13, 12) (m = 1.0, σ = 0.3)

Gibbs+tanh edge covariance length scale, ℓ2 Gamma(5.8, 9.7) (m = 0.5, σ = 0.25)
Gibbs+tanh transition width, ℓw Exp(10) (m = 0, σ = 0.1)
Gibbs+tanh pedestal center, x0 Gamma(102, 101) (m = 1.0, σ = 0.1)

mtanh pedestal midpoint, x0 𝒰 (0.98, 1.1)
mtanh pedestal half-width, δ 𝒰 (0, 0.1)
mtanh core slope factor, α 𝒰 (−0.5, 0.5)
mtanh pedestal height, h 𝒰 (0, 5 × 1020 m−3)
mtanh pedestal foot, b 𝒰 (0, 0.5 × 1020 m−3)

data, the use of the se covariance kernel changed the posterior distribution for the
mtanh fit’s parameters relative to the case where only the mtanh function is used
to fit the data. This is further illustrated by the dotted black curves in figure 2.36,
which show the mean and standard deviation of the marginalized mean curve8

m(x∗|y) = ∫m(x∗|θ)fΘ|Y (θ|y) dθ and the marginalized Gaussian process residual
rgp(x∗|y) = ∫ (y∗(x∗|y, θ) −m(x∗|θ))fΘ|Y (θ|y) dθ. The marginalized mean curve is
systematically higher than the data, and is drawn down to produce a good fit by the
systematically negative residual. Furthermore, the very large variance in each of the

8. The uncertainties in the marginalized mean curve and Gaussian process residual were computed from
the mcmc results using the same technique with the laws of iterated expectations and total covariance
as described in section 2.3.7.
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Table 2.20: Summary statistics for the posterior distributions of the parameters and
hyperparameters of the fits to the H-mode ne profile with and without the mtanh
mean function.

Parameter [units] Mode Mean 95% interval

Gibbs+tanh σf [1020 m−3] 1.54 2.22 [ 0.982 , 4.94 ]
ℓ1 1.62 1.69 [ 1.26 , 2.25 ]
ℓ2 0.655 0.695 [ 0.413 , 1.07 ]
ℓw 0.0395 0.0414 [ 0.0242 , 0.0614]
x0 1.01 1.01 [ 0.995 , 1.02 ]

se+mtanh σf [1020 m−3] 5.91 × 10−22 3.25 [ 0.106 , 15.2 ]
ℓ 1 1.09 [ 0.577 , 1.70 ]
x0 0.997 1.00 [ 0.989 , 1.04 ]
δ 0.0176 0.0329 [ 0.0107 , 0.0790]
α 0.0386 0.0985 [−0.128 , 0.355 ]
h [1020 m−3] 1.25 1.48 [ 0.864 , 2.73 ]
b [1020 m−3] 0.292 0.251 [ 0.0187 , 0.489 ]

mtanh only x0 0.997 0.997 [ 0.988 , 1.01 ]
δ 0.0176 0.0243 [ 0.00976, 0.0411]
α 0.0386 0.0481 [ 0.0228 , 0.0744]
h [1020 m−3] 1.25 1.26 [ 1.19 , 1.33 ]
b [1020 m−3] 0.292 0.233 [ 0.0230 , 0.432 ]

Table 2.21: Median relative uncertainties over the region 0 ≤ r/a ≤ 1 for fits to the H-
mode ne profile with and without the mtanh mean function. Relative uncertainties
are given as percentages.

Case ne dne/dψn a/Lne

Gibbs+tanh 1.2 12 12
se+mtanh 1.4 19 20
mtanh only 0.99 5.0 5.4
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components is cancelled out by their covariance when they are added together. Thus,
using a Gaussian process with an mtanh mean function will yield an acceptable fitted
curve, but not necessarily a useful estimate of the pedestal parameters themselves: the
approach presented here combining the mtanh mean function with the se covariance
kernel is an effective way of performing a nonstationary fit to the data, but not an
effective way of estimating the specific pedestal parameters.

Note that the map estimate given in the “Mode” column of table 2.20 has the same
parameters for the mtanh function for both the se covariance kernel with mtanh
mean function and mtanh function only cases, but that σf is vanishingly small. This
corresponds to the posterior mode being the pure mtanh function. While this means
that there are only very small residuals between the mtanh curve and the data and
hence supports the use of the mtanh function to produce summaries of H-mode
pedestals, it also illustrates that the map estimate on its own is insufficient to produce
reliable uncertainty estimates when using a parametric mean function: when σf is
small, all of the posterior uncertainty is in the parameters of the mean function.

2.6 Application of Gaussian process regression to impurity
transport measurements

This section considers the propagation of the profile uncertainties obtained in sec-
tion 2.5.1 through the analysis workflow used to obtain experimental impurity trans-
port coefficients in Alcator C-Mod. This type of sampling can be extended to any
analysis code that needs profile inputs, such as a power balance code used to compute
experimental heat fluxes [419]. The approach used to obtain the impurity transport
coefficients is described in detail in [18, 19, 55]. In the shot analyzed in section 2.5.1
(Alcator C-Mod shot 1101014006), calcium (a non-intrinsic, non-recycling impurity)
was injected four times during the stationary part of the discharge using a multi-
pulse laser blow-off impurity injector [54, 55]. The temporal and spatial evolution of
the He-like calcium was measured using the hirex-sr x-ray imaging crystal spec-
trometer [360, 420] and a line-integrated view of the Li-like calcium was measured
with the xeus extreme ultraviolet spectrometer [421]. The strahl code [276] takes
as input the ne and Te profiles plus guesses for the transport coefficient profiles D
and V from the assumed impurity flux ΓZ = −D∇nZ + VnZ and yields as output
the time evolution of the impurity density profile nZ(R, t). A synthetic diagnostic is
used to obtain the line-integrated emissivity from this result which is then compared
to the measured time evolution for He-like calcium observed with hirex-sr and
Li-like calcium observed with xeus. The guesses for D and V are then iterated
upon using the mpfit Levenberg-Marquardt minimizer [422, 423] to find the choices
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Figure 2.40: Schematic of the strahl analysis. Realizations of the ne andTe profiles
are fed into the “analysis code” along with information on the impurity density nZ
in the form of the line-integrated measurements ∫ εZ dl from several spectroscopic
diagnostics. The mpfit optimizer iterates upon the DZ and VZ profiles fed into
strahl to find the bestDZ , VZ for a given realization of ne, Te. The inputs ne, Te are
then randomly sampled in the manner indicated in figure 2.2 to yield an ensemble
of realizations of DZ , VZ from which the mean profiles and their uncertainties can
be computed.

that produce emission time histories that best match the experimental observations.
This process is shown schematically in figure 2.40. As noted in [18], the results are
believed to be most sensitive to the uncertainties in the ne and Te profiles. Therefore,
to quantify the uncertainty in the output D and V profiles, the code is run multiple
times with random samples of the ne and Te profiles, in the manner discussed in
section 2.2 and shown schematically in figure 2.2. Note, however, that there are
substantial shortcomings with this approach which are covered in chapter 3. As such,
this section should be viewed more as an illustration of propagation of uncertainties
from profiles fit with gpr than a rigorous result on impurity transport.

The previous work fit the data using splines and obtained random samples by
manually re-fitting the data after perturbing the points according to their uncer-
tainties, a process which required considerable manual intervention. The present
work improves on this through the use of gpr. The shape of the spline fits has
already been shown in figure 2.20, and is mostly similar to that of the gpr fits. Sam-
pling from the gpr fit was conducted in two ways. The simplest approach tested
is to take the map estimate ̂θmap for the hyperparameters, then draw samples from
fY∗|Y ,Θ(y∗|y, θ = ̂θmap) according to equation (2.52). The more thorough approach
tested is the fully Bayesian hierarchical sampling scheme using mcmc described at
the end of section 2.3.8. In either case, the sampling would sometimes yield samples
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that exhibited nonphysical behavior such as nonmonotonicity or negativity. There-
fore, each of the samples was checked at each of the evaluation points and the sample
was thrown out if y < 0 or y′ > 0 at any point within 0 ≤ r/a ≤ 1. In either case, 65
samples that satisfied the constraints were obtained and propagated through strahl.
It is important to note that, once appropriate prior distributions for the hyperpa-
rameters have been selected, this entire process proceeds in a completely automated
manner – the number of samples run to obtain the accuracy desired from the Monte
Carlo study is limited only by how much computer time the user is willing to devote
to the strahl analysis. This is in contrast with the spline-based approach, where
each sample required laborious hand-tuning of the spline parameters to produce an
acceptable fit to each set of perturbed data points.

The resulting D and V profiles are given in figure 2.41. The mean D profiles
from the two gpr-based approaches show a slight offset from the previous spline
result, but the uncertainty envelopes basically overlap over most of the region of
interest. The V profile, however, shows a stronger systematic difference between the
gpr-based approaches and the previous spline result. While this difference is not
substantially outside of the ±1σ error bars, it is believed to be a result of the fact that
the gpr-based Te profile has a mean which is, on average, about 11% lower than the
mean spline profile.

It is of interest to note that the map andmcmc treatments of the hyperparameters
yielded approximately the same results for both the means and the uncertainties of
D and V . This can be expected from the small change in uncertainty for the values
of ne and Te noted in table 2.9 and the fact that only the value and not the gradient of
these background profiles enters the calculation. Therefore, for this case it is possible
to use the simpler map calculation, which enables the use of advanced samplfing
strategies such as Latin hypercube sampling [355], quasi-Monte Carlo sampling [291]
or sparse quadrature [338] to further improve the rate of convergence, though these
have yet to be applied to this problem.

2.7 Summary of profile fitting with Gaussian process
regression

The chapter has presented the use of Gaussian process regression (gpr) for fitting
smooth curves to noisy, discrete observations of plasma profiles and then subse-
quently propagating the uncertainty in the fitted curve through an analysis code.
Fits with various stationary and nonstationary covariance kernels were performed
on synthetic data and two promising new nonstationary covariance kernels were
identified: the Gibbs covariance kernel with tanh covariance length scale function
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Figure 2.41: D and V profiles for spline fits (black dashed), sampling from the map
estimate (red dash-dot) and from hierarchical sampling with mcmc (blue solid).
The uncertainty envelopes are ±1σ . The profile is only shown over 0 < r/a < 0.6
because the results are not trusted outside of this region. This is an updated version
of a figure which originally appeared in [305]. This figure was produced using
strahl_compare_post_new.py.

and the se covariance kernel with 3-knot I-spline input warping function. Profile
fitting with real data from Alcator C-Mod demonstrated the basic fit including rigor-
ous uncertainty estimates on the gradients and gradient scale lengths, the use of tci
data to constrain the fit, the inference of second derivative profiles to test theories of
momentum transport, the ability to fit data as a function of both space and time and
the capability to combine gpr with a parametric mean function in order to infer H-
mode pedestal parameters. While the uncertainty propagation example shown here
involved propagation of the uncertainty in the background ne, Te profiles through

https://github.com/markchil/thesiscode/blob/master/strahl_compare_post_new.py
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an analysis code to obtain impurity transport coefficients, this approach is extremely
general and can deliver benefits in any situation where gradients or profile fits are
needed, particularly within the context of gyrokinetic validation. This approach
was shown to have considerable advantages over the more traditional use of splines
in the context of fitting profiles and propagating uncertainty through analysis and
simulation codes in the following respects:

• The fit proceeds automatically using standard statistical procedures instead
of manual, subjective hand-tuning.

• This flexible, non-parametric approach does not overly constrain the shape of
the fit.

• It is trivial to apply this approach to multivariate data of arbitrary dimension.

• Line-integrated or otherwise transformed data can be combined with local
measurements in the fit in a statistically rigorous manner.

• The method provides an estimate of the uncertainty on the fitted value and
derivative(s) without additional work.

• It is straightforward to draw random samples and easy to reduce the dimen-
sionality of the space to be sampled in order to apply advanced techniques to
improve the rate of convergence of uncertainty propagation.

Two approaches for handling the hyperparameters that dictate the nature of the fit
were compared: the map estimate provides a point estimate for the hyperparameters
and is faster and simpler to work with, while the use of mcmc to marginalize over
the hyperparameters provides a more rigorous accounting of the uncertainty hiding
in the hyperparameters of the fit. These two approaches give similar results for
the uncertainty in the value of the fit, but differ substantially for the uncertainty in
the gradient. Therefore, it is necessary to use the more complicated mcmc-based
marginalization when working with processes that are strongly sensitive to gradients.
These two approaches were applied to the task of inferring the impurity transport
coefficients D and V from experimental data, and yielded results that were com-
parable to what was obtained previously using splines. But the new results were
obtained in a far more automated manner and demonstrated far more convincing
convergence. It was verified that the results for D and V do not depend on the
gradients of the background profiles, and hence the use of the simpler map estimate
is sufficient. Open-source software to perform gpr with gradient constraints and
predictions has been developed and is available for use by anyone needing to fit
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smooth curves, estimate uncertainties in gradients and efficiently produce samples
for use in uncertainty propagation [306, 307]. Further use of the gpr-based fitting
and sampling approaches presented here has the potential to improve the quality
and trustworthiness of uncertainty estimates on both profile fits and code outputs,
while simultaneously reducing the time for analysis both by reducing the amount of
manual intervention necessary to produce fits and by improving the convergence of
uncertainty propagation calculations.



3
Inference of experimental impurity
transport coefficient profiles

3.1 Introduction and motivation: issues with existing
approaches

The measurement of impurity transport coefficients is a very challenging inference
problem, with attempts at performing these measurements going backmany decades
(see section 1.3 for a review of the relevant literature). This thesis builds on thework at
Alcator C-Mod which has attempted to infer mid-Z (i.e., calcium, Z = 20) transport
in L-mode plasmas [18, 19, 55, 305]. The approach used in the previous work (both
at Alcator C-Mod and other facilities) suffered from a number of issues which this
chapter attempts to highlight, explain and rectify. In particular, the following issues
are present in the previous work:

• The previous work claims that the transport coefficients are unconstrained
outside of r/a ≳ 0.6 because of low signal strength on the x-ray imaging crystal
spectrometer (xics) chords viewing outside of that radius, but the computed
uncertainties in that region are not consistent with this assumption. This is
likely a result of some combination of the following three issues:

1. The observations from the core where there is high signal strengthmight
help to constrain the transport coefficients in the outer region more than
expected.

2. The basis functions for the D and V profiles may be too inflexible to
allow the Monte Carlo sampling procedure described in section 2.6 to
capture the full uncertainty in the inferred transport coefficients. This
is exacerbated by the fact that the previous approach did not provide a
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rigorous procedure for selecting the appropriate level of complexity in
the basis functions.

3. The Monte Carlo sampling procedure previously used to propagate the
uncertainty in ne and Te may be missing a considerable amount of un-
certainty in the parameters of the D and V profiles. This is very likely
as the former procedure did not account for the width of the posterior
distribution when maximizing the likelihood of the data, thereby effec-
tively ignoring the uncertainties in the spectroscopic measurements and
the possibility that there are multiple sets of parameters which might
describe the data equally well.

• Based on the intuitive notion that a high time resolution is necessary to sep-
arate D from V , the previous analysis combined data from three injections
at different phases with respect to the xics sampling rate to yield a higher
effective time resolution. Because each injection is at a different phase with
respect to the sawteeth, this approach makes it impossible to properly account
for the effects of sawteeth. At best this procedure will yield some form of
“sawtooth-averaged” transport coefficients. But unless the measured trans-
port coefficients are to be compared to a simulation which includes the effects
of sawteeth and is post-processed in a similar manner, this measurement will
be questionable for use in validating simulations of impurity transport. It
will be shown in section 3.4 and section 3.6.3 that the intuition that high time
resolution is necessary is incorrect, and 6ms sampling of a single injection
should be sufficient as long as a reasonable spatial resolution is obtained.

• The optimization problem to find the parameters describing D and V is very
poorly behaved in at least two ways:

1. It was found that roundoff error in the forward model requires very large
step sizes when computing derivatives using finite differences. This calls
the use of derivative-based optimizers such as the Levenberg-Marquardt
algorithm used for the previous work into question, both in terms of us-
ing the derivatives to guide the search and in terms of using the estimated
inverse Hessian matrix to approximate the parameter uncertainties.

2. Finding a good initial guess for the optimizer is difficult: many points in
the parameter space will fail to make much progress, implying that there
are large areas of the parameter space which give an equally poor fit to
the data such that the optimizer cannot get out of these plateaus. For
points that do find an acceptable solution, different starting points can
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yield drastically different profiles forD and V , but comparable goodness-
of-fit.

• The previous work ascribed most of the uncertainty in the D and V profiles
to the uncertainties in ne and Te. But the present analysis indicates very
low sensitivity to those quantities and instead indicates that the uncertainty
seen before is exclusively a function of the random spline knot positions used
during the Monte Carlo sampling.

The rest of the chapter is organized as follows: section 3.2 reviews the basic
details of impurity transport. Section 3.3 describes the effects of D and V on the
spatiotemporal evolution of the impurity density profile following an impurity injec-
tion in order to identify the key characteristics which help to constrain the transport
coefficients. Section 3.4 uses these results in a linearized Bayesian analysis in order
to approximate the diagnostic requirements to reconstruct D and V accurate to
a given tolerance. Section 3.5 casts the inference of the transport coefficient pro-
files as an inverse problem and presents the mathematical machinery necessary to
solve the problem. Section 3.6 then applies the approach described in section 3.5
to multiple synthetic datasets which were constructed to illustrate various features
of this inference problem. Specifically, section 3.6.1 proves the concept using local
measurements of the total impurity density and section 3.6.2 proves the concept us-
ing line-integrated measurements equivalent to the diagnostic situation on Alcator
C-Mod. Section 3.6.3 then uses the line-integrated synthetic data to demonstrate
that simple transport coefficient profiles can be inferred using data only from the
long decay period of the signals. Section 3.6.4 demonstrates the pathologies which
can arise from the use of free knot splines. Section 3.6.5 demonstrates the surprising
result that the background ne and Te profiles have little effect on the inferred D and
V profiles and explains the previous results in terms of the sensitivity of the solution
to the knot locations. Section 3.6.6 demonstrates the use of the model evidence
to select the model complexity in a very simple case, and section 3.6.7 applies the
whole framework to synthetic data which matches the complexity inferred by the
previous work. Finally, section 3.7 summarizes the work and suggests future research
directions based on the results presented. Supporting material from this chapter
which distracts from the main discussion but gives additional details on the results
is given in appendix c and the bayesimp impurity transport analysis code developed
as part of this work is described in appendix g.
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3.2 Basic details of impurity transport

This section describes the basic details of impurity transport as modeled with the
strahl code [276]. Consider the transport of an impurity with atomic number Z.
The density of charge state i (where i = 0 corresponds to the neutral impurities and
i = Z corresponds to the fully-stripped impurities) is denoted by nZ,i, the density
of all charge states is denoted by nZ = ∑Z

i=0 ni,Z , and the density of impurity ions is
denoted by n+

Z = ∑Z
i=1 ni,Z . The transport of a given charge state1 i > 0 obeys the

continuity equation

∂nZ,i

∂t
= −𝛁 ⋅ ΓZ,i + QZ,i, (3.1)

where ΓZ,i is the flux andQZ,i is the source/sink term. The source/sink term includes
ionization, recombination and charge exchange into/out of the charge state:

QZ,i = −nenZ,iSZ,i − nenZ,iαZ,i − nHnZ,iαcx,Z,i

+ nenZ,i−1SZ,i−1 + nenZ,i+1αZ,i+1 + nHnZ,i+1αcx,Z,i+1, (3.2)

where SZ,i is the rate coefficient for ionization out of charge state i (and hence into
charge state i + 1), αZ,i is the rate coefficient for recombination out of charge state
i (and hence into charge state i − 1), nH is the neutral hydrogen density, and αcx,Z,i
is the rate coefficient for charge exchange out of state i (and hence into charge state
i − 1). The neutral source/sink term QZ,0 also includes the injected particle source.
As shown in [276], if poloidal and toroidal asymmetries can be neglected2 (i.e., the
charge state densities nZ,i are constant on flux surfaces), then equation (3.1) can be
expressed as a 1d radial continuity equation:

∂nZ,i

∂t
= − 1

rvol
∂

∂rvol
(rvolΓZ,i,rvol) + QZ,i, (3.3)

where the use of the volumetric minor radius

rvol =
√

Vr

2π2R0
(3.4)

1. Technically nZ,0 will obey equation (3.1) but not the flux surface-averaged results given later in this
discussion.

2. Note that poloidal asymmetries of high- [424] and mid-Z [425, 426] impurities have been observed in
Alcator C-Mod, among other machines [427–430]. The assumption of poloidal symmetry is used in
this thesis in order to keep the analysis tractable, but this should be noted as a potential source of error,
and a future improvement which can be made in this analysis.
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allows the flux surface-averaged transport in shaped plasmas to be described correctly.
(Here, Vr is the volume enclosed by the flux surface.)

The impurity flux is typically taken to have a diffusive and a convective compo-
nent:

ΓZ,i = −DZ,i𝛁nZ,i + VZ,inZ,i (3.5)

ΓZ,i,rvol = −DZ,i
∂n

∂rvol
+ VZ,inZ,i, (3.6)

where DZ,i is the diffusion coefficient and VZ,i is the convective velocity. A positive
VZ,i corresponds to a radially outwards flux. For simplicity, the following assumes
that the transport coefficients are the same for all charge states, so the subscript i is
omitted.3 Therefore, the impurity transport equation for charge state i is

∂nZ,i

∂t
= − 1

rvol
∂

∂rvol (−rvolDZ
∂nZ,i

∂rvol
+ rvolVZnZ,i) + QZ,i. (3.7)

This represents a coupled set of Z partial differential equations. The strahl code
solves this set of equations to yield the temporal and spatial evolution of the charge
state density profiles nZ,i(r, t). The evolution of the total impurity density profile
can be obtained by summing equation (3.7) over the charge states i ≥ 1. In this case,
the ionization/recombination from adjacent charge states balances, leaving only the
ionization/recombination into/out of the neutral impurities:

∂n+
Z

∂t
= − 1

rvol
∂

∂rvol (
−rvolDZ

∂n+
Z

∂rvol
+ rvolVZn

+
Z)

− nenZ,1αZ,1 − nHnZ,1αcx,Z,1 + nenZ,0SZ,0. (3.8)

Consider the radial transport equation, where the subscripts have been omitted
for simplicity:

∂n
∂t

= 1
r

∂
∂r (−rD∂n

∂r
+ rVn) + Q. (3.9)

Now consider the steady-state (∂n/∂t = 0) behavior and take the particle source/sink

3. While the neoclassical transport coefficients are functions of the charge state i, the transport of mid-Z
impurities such as calcium is thought to be dominated by E × B turbulence such that the transport
will be mostly independent of i. See, for example, [431] for a Z scaling of impurity profiles arising from
the combination of neoclassical and turbulent transport: the scaling levels off around Z ≈ 20.
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to be zero throughout the plasma volume:

0 = ∂
∂r (−rD∂n

∂r
+ rVn) (3.10)

0 = ∫
r

0

∂
∂r′ (−r′D ∂n

∂r′ + r′Vn) dr′ (3.11)

0 = −rD∂n
∂r

+ rVn (3.12)

∂n/∂r
n

= V
D

. (3.13)

Therefore, the steady-state impurity density profile only yields information on the
ratio V /D. This necessitates the use of time-resolved measurements of transient
sources to separate the contributions of V and D to the flux.

3.3 Intuition from time-series characteristics

In order to illustrate the effects of diffusion and convection on impurity transport,
strahl was run many times with various values of D and V . The ne and Te profiles
and the magnetic equilibrium were taken from Alcator C-Mod shot 1101014006,
an L-mode discharge used for previous impurity transport work [18, 55, 305]. The
source function was taken to be a narrow (in space and time) pulse of calcium to
model a delta function. The transport coefficient profiles used were simply

DZ = D, VZ = V a
ac

r
a

, (3.14)

where V is the convective velocity at the edge of the computational domain r = ac
(just outside of the lcfs), see figure 3.1. Additional insight into the behavior of
the impurity density given these simple transport coefficient profiles is given in
section c.1.

In general, a transient impurity injection exhibits two phases: a rapid rise of the
plasma impurity content when the impurity flux is inwards followed by a slower
decay of the impurity content while the impurity flux is outwards. This is shown
in figure 3.2, which gives the time histories of the impurity density at several radial
locations for the basic values D = 1m2/s, V = −10m/s (these profiles are shown in
figure 3.1). Notice that there is a finite delay between the time of the injection tinj
and the time the impurity density peaks, and that this delay is different between the
core and the edge of the plasma: there is a finite time for the impurities to reach the
core. This is also illustrated by figure 3.3, which shows the evolution of the impurity
density profile. Therefore, one possible figure of merit to describe these signals is
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Figure 3.1: Basic impurity transport coefficient profiles used to generate
the synthetic impurity transport data. This figure was produced using
make_time_res_plots.py.

the core rise time, denoted by tr. While in signal processing it is more common to
characterize rise times in terms of the time to go from 10% to 90% of the final value,
the analysis here uses the actual time at which the peak value is obtained.

After the peak there is an exponential decay of the density at all locations, the
time constant of which is the impurity confinement time τimp. This is best defined in
terms of the temporal decay of the total number of impurity atoms inside the lcfs,

NZ = ∫

Z

∑
i=0

nZ,i dV , (3.15)

where the volume integral is estimated using the trapezoid rule. This is shown in

https://github.com/markchil/thesiscode/blob/master/make_time_res_plots.py
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Figure 3.2: Temporal evolution of the impurity density nZ at several radii. The
vertical scale was set to cut off the curve for r/a = 1 in order to show the details
at the other radii. Note that all three signals peak at different times because of the
finite time for the impurities to penetrate to the core of the plasma. This figure was
produced using make_DV_plot_matrix.py.
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Figure 3.3: Temporal evolution of the impurity density profile. Profiles are drawn
every 1ms for the first 10ms, then every 10ms after that. During the first 10ms
the profile shape is evolving as the impurities move from the edge in. After 10ms
the decay of NZ enters the purely exponential decay phase and the profile shape is
constant as it decays. This figure was produced using make_DV_plot_matrix.py.

https://github.com/markchil/thesiscode/blob/master/make_DV_plot_matrix.py
https://github.com/markchil/thesiscode/blob/master/make_DV_plot_matrix.py
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Figure 3.4: Temporal evolution of the total impurity content NZ . The exponential
fit used to obtain the impurity confinement time τimp is shown as the green dashed
curve. Note that the initial 10ms of the decay exhibits a different time constant
because the impurity density profile shape is still evolving. This figure was produced
using make_DV_plot_matrix.py.

figure 3.4. The impurity confinement time is then determined by fitting4 NZ ∼
NZ,0 exp(−t/τimp). Note, however, that the initial period of the decay is not purely
exponential/exhibits a different time constant. This is a result of the fact that the
impurity density profile shape is still evolving up until about 10ms after the injection,
as noted in figure 3.3. Therefore, when post-processing the results of strahl runs,
the impurity confinement time is determined by fitting NZ(t) from 10ms after it
peaks and on.5 Note that this has a key implication for the analysis of experimental
data: if confinement times are fit using the initial part of the decay of a signal (when
the signal-to-noise ratio is highest), this will likely lead to an incorrect value because
the profiles may still be evolving instead exhibiting pure exponential decay with the
desired time constant.

Figure 3.5 illustrates the effect of changing D and V on nZ(r, t). It is clear that
a wide variety of behaviors arises even from this simple model. The figure implies
that four specific figures of merit are particularly relevant:

• the core rise time tr,

4. In the present analysis this is accomplished by fitting a straight line to lnNZ .
5. The actual time for the profile shape to settle depends on D, V ; 10ms was found to be sufficient for the

cases considered here.

https://github.com/markchil/thesiscode/blob/master/make_DV_plot_matrix.py
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Figure 3.5: Effect of D, V on nZ(r, t). All plots share the same coloring so that abso-
lute magnitudes can be compared. To make the details visible, the coloring saturates
at 5 × 1012 m−3 (white regions). When V is large relative to D the impurities remain
in the core for a very long time, though a gradual loss to the sol is still observed. It
is clear that bothD and V affect the rise time tr, the impurity confinement time τimp
and the peak impurity density nZ,p(0), as well as the fine details of the profile shape
and time evolution. This figure was produced using make_DV_plot_matrix.py.

https://github.com/markchil/thesiscode/blob/master/make_DV_plot_matrix.py
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Figure 3.6: Impurity confinement time τimp as a function of D and V . The coloring
and the contours are logarithmically spaced. Outside of the lowD, strongly negative
V region where accumulation occurs, τimp is a function of both D and V . Higher
diffusion and lower inwards convection leads to shorter confinement of impurities,
as expected. This figure was produced using make_time_res_plots.py.

• the impurity confinement time τimp,

• how broad versus peaked the impurity density profile is during the exponential
decay phase, and

• the peak core impurity density nZ,p(0).

For the analysis in this section the broadness of the profile is represented by the ratio
b0.75 = nZ(r/a = 0.75)/nZ(0). This was chosen over more sophisticated estimates of
profile peaking like nZ(0)/⟨nZ⟩vol because it can be estimated from two diagnostic
channels and hence enables the measurement to be made with simpler diagnostics.
Plots of these quantities as functions of D and V are given in figure 3.6 through
figure 3.9.

The impurity confinement time τimp is a function of both D and V , and was
found to be consistent with the expression given in [432]:

τimp ≈ 77 + S2

56 + S2
eS − S − 1

4S2
a2

D
, (3.16)

https://github.com/markchil/thesiscode/blob/master/make_time_res_plots.py
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Figure 3.7: Core rise time tr as a function ofD andV . The coloring and the contours
are logarithmically spaced. The “zig-zag” shape of the low tr contours arises from
the 10 μs time resolution. Outside of the low D, strongly negative V region where
accumulation occurs, tr is a function primarily ofD. HigherD sweeps the impurities
into the core of the plasma faster, as is expected. This figure was produced using
make_time_res_plots.py.
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Figure 3.8: Peak core impurity density as a function of D and V . The coloring and
the contours are linearly spaced and the coloring saturates at nZ,p(0) = 25 × 1012 m−3.
The contours are approximately lines from the origin, which means they are also
contours of V /D. This figure was produced using make_time_res_plots.py.

https://github.com/markchil/thesiscode/blob/master/make_time_res_plots.py
https://github.com/markchil/thesiscode/blob/master/make_time_res_plots.py
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Figure 3.9: Impurity density profile broadness b0.75 = nZ(0.75)/nZ(0) as a function
of D and V . The coloring and the contours are linearly spaced and the coloring
saturates at b0.75 = 1. The contours are lines from the origin, which means they are
also contours of V /D. This figure was produced using make_time_res_plots.py.

where

S = −aV
2D

. (3.17)

Note that

τimp
D
a2

∼
{

eS/(4S2), S ≫ 0
−1/(4S), S ≪ 0

. (3.18)

This is shown as a function of S in figure 3.10.
The rise time tr is primarily a function of D. This is consistent with [433], where

an eigenvalue expansion for the Green’s function (i.e., impulse response) of the
convection-diffusion equation in circular geometry is given. The first eigenvalue
corresponds to the impurity confinement time from [432] while the second eigen-
value determines the rise time and corresponds to a time scale τ2 ≈ 0.03a2/D which
is a function of D only. This is also consistent with the results given in section c.1
for typical values of D, V which shows that the diffusive flux dominates the early
portion of the injection: when all of the injected impurities are localized to the edge
of the plasma, there is a very high density gradient to drive them inwards. This time
scale is shown as the horizontal line in figure 3.10.

https://github.com/markchil/thesiscode/blob/master/make_time_res_plots.py
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Figure 3.10: Normalized impurity confinement time τimpD/a2 as a function of
S = −aV /(2D) (blue solid curve), as predicted by equation (3.16). Positive S cor-
responds to inwards convection. Increasing S dramatically increases the impurity
confinement time. Also shown is the (normalized) time scale of the second eigen-
value τ2D/a2 ∼ 0.03 (green dashed line) which determines the rise time tr. For
all cases with inwards convection, τimp > τ2. This figure was produced using
make_seguin_plot.py.

The profile broadness b0.75 has contours which are lines originating from the
origin, which means b0.75 is primarily a function of the peaking factor V /D. This is
consistent with figure 4 of [432], where it is found that the profile shape is a function
of S ∝ V /D. The profile broadness is shown as a function of S in figure 3.11, which
confirms that this interpretation holds for S ≳ 10. Note that, because the profile
shape is dictated by V /D, having extra spatial resolution provides a better constraint
on the profile shape and therefore is equivalent to knowing b0.75 ∝ V /D to a higher
precision in the context of the following analysis. IfD andV have amore complicated
shape than what is assumed here the spatial resolution must be higher in order to
determine the spatial structure of the profile. The peak core impurity density nZ,p(0)
is also primarily a function of V /D. In the present analysis, b0.75 is preferred as the
proxy for V /D because measuring nZ,p(0) requires an absolute calibration of the
diagnostics whereas measuring b0.75 only requires a relative calibration between the
spatial channels.

https://github.com/markchil/thesiscode/blob/master/make_seguin_plot.py


3.4. Bayesian analysis of required tolerances 159

−10 −5 0 5 10 15 20 25
S

10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

b 0
.7
5

b0.75 is a proxy for S

Figure 3.11: Impurity density profile broadness b0.75 as a function of normalized
peaking factor S. This figure was produced by making a scatterplot of the results
from the strahl runs on the dense grid in (D,V) space. Over most of the domain,
b0.75 is a function of S only, indicating that it is a good proxy for S. At low D and
low/outwards V , however, the relationship breaks down. This figure was produced
using make_time_res_plots.py.

3.4 Bayesian analysis of required tolerances

This section derives a model describing the inference of the transport coefficients
D and V from measurements of τimp, tr and br/a = nZ(r/a)/nZ(0). As illustrated in
the previous section, these three observables represent nearly6 all of the information
which can be readily extracted from spatially- and temporally-resolved measure-
ments of the impurity density profile, and hence this analysis should be representative
of the more complete analysis which combines strahl with a synthetic diagnostic
in order to find the best fit to the observed diagnostic signals. This analysis is useful
because it allows the diagnostic capabilities necessary to reconstructD and V to a de-
sired precision to be estimated without requiring many computationally-expensive
strahl runs. Furthermore, the following analysis is applicable to any experimental
situation which can be cast as an inverse problem where the observables y are a func-

6. There is additional information on D carried by the rise times of the other spatial channels and hence
the evolution of the profile shape, but this is not included in the present analysis for two reasons: first,
the fitting of the spline to determine the rise time is one of the more computationally-expensive steps
in the analysis. Second, the analysis in section 3.4.3.1 indicates that the profile shape measurements
br/a will be more important than the rise time in the inference.

https://github.com/markchil/thesiscode/blob/master/make_time_res_plots.py


160 Chapter 3. Inference of experimental impurity transport coefficient profiles

tion of the quantities to be inferredT : y = f (T), provided that f (T) can be linearized
in a region around the true values bounded by the diagnostic uncertainties.

3.4.1 Derivation of the model

As shown in figure 3.6 through figure 3.9, τimp(D,V), tr(D,V) and b0.75(D,V) have
contours that are not parallel to each other. Therefore, provided that the assumed
profile shapes for D and V are correct, two or more of these measurements can
reconstruct D and V . This is shown in figure 3.12 where the contours corresponding
toD = 1m2/s,V = −10m/s are shown. This construction allows a simple estimate of
the spatial resolution, temporal resolution and noise level requirements to determine
D and V . Note that the following analysis does not account for the uncertainties in
the atomic physics data and the background ne, Te profiles, nor does it account for
the issues inherent in the tomographic inversion of line-averaged measurements.

Consider a measurement of some quantity yi which is a function of both D and
V :

yi = yi(D,V). (3.19)

Linearize at D = D0, V = V0:

yi ≈ yi,0 +
∂yi
∂D |D=D0,V=V0

(D − D0) +
∂yi
∂V |D=D0,V=V0

(V − V0) (3.20)

=
(
yi,0 −

∂yi
∂D |D=D0,V=V0

D0 −
∂yi
∂V |D=D0,V=V0

V0)

+
∂yi
∂D |D=D0,V=V0

D +
∂yi
∂V |D=D0,V=V0

V (3.21)

= ai + biD + ciV , (3.22)

where yi,0 = yi(D0,V0). To prepare for the next step, write this in vector form:

yi ≈ ai + [bi ci] [
D
V] = ai + CiT, (3.23)

where Ci is the row vector [bi, ci] and T = [D,V]T is the column vector of transport
coefficients. Consider each measurement to have Gaussian noise:

fYi|T(yi|T) = 𝒩 (yi; ai + CiT, σ2i ) . (3.24)
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Figure 3.12: Contours of τimp (blue solid), tr (green dashed) and b0.75 (red dotted) for
D = 1m2/s, V = −10m/s (white point). Each measurement is shown with its ±2σ
(i.e., 95% confidence) interval for στimp

= 0.3ms, σtr = 0.5ms and σb0.75
= 6 × 10−3.

Any given measurement only constrains D and V to lie in a neighborhood around
a contour that extends through all of D, V space. The unique intersection of the
contours corresponding to two or more measurements determines D and V . If
multiple, noisy measurements are used then the D and V values which fit their
intersection in the least-squares sense are found. The angles of the intersections
determine how much information a measurement adds to the inference: the closer
to perpendicular two measurements are, the better they can constrain D and V .
The magenta ellipse gives the 95% posterior region for the combination of these
three measurements according to equation (3.34) through equation (3.38). The ±2σ
bands on the contours are slightly asymmetric because they were generated using
the actual strahl outputs and not the linearization. This figure was produced using
make_bayes_time_res_plot.py.

The joint distribution for n such independent7 measurements y ∈ Rn is then

fY|T(y|T) = 𝒩 (y; a + CT,Σy) , (3.25)

where a ∈ Rn is the vector containing ai for each measurement, C ∈ Rn×2 is the
matrix where each row contains Ci, and Σy has each σ2i on the diagonal and zeros

7. In general, Σy could include correlations between the measurements, but this level of sophistication
is not adopted for the present analysis. A non-diagonal covariance matrix would be necessary to
represent the results of a tomographic inversion, for instance.

https://github.com/markchil/thesiscode/blob/master/make_bayes_time_res_plot.py
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everywhere else. Assume a Gaussian prior distribution for T :

fT(T) = 𝒩 (T; μT ,ΣT). (3.26)

The posterior distribution for T is then

fT|Y (T|y) ∝ fy|T(y|T)fT(T) = 𝒩 (y; a + CT,Σy) 𝒩 (T; μT ,ΣT). (3.27)

The Gaussian distribution is self-conjugate, meaning that a Gaussian likelihood
with Gaussian prior distribution results in a Gaussian posterior distribution [286,
304]. The posterior distribution for T is then given by the standard result for linear
Gaussian systems [304]:

fT|Y (T|y) = 𝒩 (T; μT|y,ΣT|y) (3.28)

Σ−1
T|y = Σ−1

T + CTΣ−1
y C (3.29)

μT|y = ΣT|y (CTΣ−1
y (y − a) + Σ−1

T μT) . (3.30)

Now make fT(T) non-informative by making it infinitely wide, such that Σ−1
T → 0:

ΣT|y = (CTΣ−1
y C)−1 (3.31)

μT|y = (CTΣ−1
y C)−1 (CTΣ−1

y (y − a)) . (3.32)

Note that this is exactly the result of heteroscedastic linear least squares regression
for the model y − a = CT . The use of a Gaussian likelihood and non-informative
prior distribution means that this analysis combines the noisy, potentially conflicting
observations y to reconstruct the transport coefficients T which are most consistent
with the observations in the weighted least squares sense.

Expanding the covariance matrix given in equation (3.31) yields

ΣT|y = 1

(∑n
i=1 b

2
i /σ

2
i ) (∑n

i=1 c
2
i /σ2i ) − (∑n

i=1 bici/σ
2
i )

2

⋅ [
∑n

i=1 c
2
i /σ2i − ∑n

i=1 bici/σ
2
i

− ∑n
i=1 bici/σ

2
i ∑n

i=1 b
2
i /σ

2
i ] . (3.33)

Therefore, the (marginal) uncertainties in the individual parameters are

σ2D =
∑n

i=1 c
2
i /σ2i

(∑n
i=1 b

2
i /σ

2
i ) (∑n

i=1 c
2
i /σ2i ) − (∑n

i=1 bici/σ
2
i )

2 (3.34)

σ2V =
∑n

i=1 b
2
i /σ

2
i

(∑n
i=1 b

2
i /σ

2
i ) (∑n

i=1 c
2
i /σ2i ) − (∑n

i=1 bici/σ
2
i )

2 (3.35)
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and the covariance is

σDV =
− ∑n

i=1 bici/σ
2
i

(∑n
i=1 b

2
i /σ

2
i ) (∑n

i=1 c
2
i /σ2i ) − (∑n

i=1 bici/σ
2
i )

2 . (3.36)

The predictions are then

μD = σ2D

n

∑
i=1

bi(yi − ai)
σ2i

+ σDV
n

∑
i=1

ci(yi − ai)
σ2i

(3.37)

μV = σ2V

n

∑
i=1

ci(yi − ai)
σ2i

+ σDV
n

∑
i=1

bi(yi − ai)
σ2i

. (3.38)

This framework allows the use of measurements of any number of features
(including repeated measurements of the same feature) and the estimation of any
number of parameters. It can be applied to analyzing the inferences to be obtained
from any diagnostic provided that the features to be observed are roughly linear in
the parameters to be inferred and the noise on the features to be observed is roughly
Gaussian.

3.4.2 Determining the required tolerances on τimp, tr and b0.75

Now consider the reconstruction of the true parameters D0 = 1m2/s, V0 = −10m/s
using measurements of the three parameters discussed previously: τimp, tr and b0.75.
The absolutely-calibrated measurement of the peak impurity density on axis nZ,p(0)
is not included because b0.75 contains the same information but does not require an
absolute calibration of the measurement.

These quantities were evaluated over a dense grid covering a ±20% window
around the true parameters and contour plots are given in figure 3.13 through fig-
ure 3.15. The slightly uneven spacing of the contours indicates that the linearization
is not exact, but this analysis will still be useful to establish the basic specifications
required. In particular, τimp seems to exhibit the most nonlinearity in the sense that
the spacing of the contours is visibly nonuniform. This is not an issue as τimp is
typically the quantity that can be measured to the highest precision because, even
at moderate time resolution, there are many samples in the decay of the impurity
density.

The coefficients ai, bi and ci were evaluated for each of the three signals by fitting
the results with a bivariate cubic interpolating spline. Because of the discretization er-
ror in tr noted in figure 3.7, the spline for tr had a small smoothing parameter to allow
an accurate estimate of the derivatives to be obtained. Plots showing the discrep-
ancy between the linearizations and the actual strahl results are given in figure c.3
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Figure 3.13: Impurity confinement time τimp in the vicinity of D = 1m2/s, V =
−10m/s. The contours and coloring are linearly spaced. This figure was produced
using make_bayes_time_res_plot.py.
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Figure 3.14: Rise time tr in the vicinity of D = 1m2/s, V = −10m/s. The
contours and coloring are linearly spaced. This figure was produced using
make_bayes_time_res_plot.py.

https://github.com/markchil/thesiscode/blob/master/make_bayes_time_res_plot.py
https://github.com/markchil/thesiscode/blob/master/make_bayes_time_res_plot.py
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Figure 3.15: Impurity density profile broadness b0.75 in the vicinity of D = 1m2/s,
V = −10m/s. The contours and coloring are linearly spaced. This figure was
produced using make_bayes_time_res_plot.py.

through figure c.5. The expected result of combining these three measurements with
reasonable uncertainties is shown in figure 3.12.

The 1σ uncertainties in D and V were evaluated over a dense, logarithmically-
spaced grid of στimp

, σtr , σb0.75
using equation (3.34) and equation (3.35). The isosur-

faces in (στimp
, σtr, σb0.75

) space corresponding to σD = 0.1D0 and σV = 0.1|V0| are
given in figure 3.16. These isosurfaces were computed using the marching cubes algo-
rithm in scikit-image [434, 435]. These figures illustrate what is intuitively expected:
when any two quantities are known to high precision, the third quantity becomes
redundant and has very low required precision. Also of interest is the fact that the
surface for σV = 0.1|V0| lies entirely below the surface for σD = 0.1D0, which is
also illustrated in figure 3.17 where the isosurfaces are overlaid. This means that D
will always be known better than V unless b0.75 is known very well, outside of the
domain of the plots shown. That reconstructing V requires b0.75 to be measured to
a higher precision than reconstructingD does makes sense, as b0.75 is the observable
which is most sensitive to V .

Note that τimp is expected to be known to a much higher precision than b0.75
or tr, so plots of σD and σV as functions of σtr and σb0.75

for στimp
= 1 μs are given

in figure 3.18. Note from figure 3.17 that these plots are expected to be the same
for στimp

≲ 1ms; στimp
= 1 μs was chosen for convenience. Figure 3.18 confirms the

intuition from the isosurfaces in (στimp
, σtr, σb0.75

) space: when τimp is known with

https://github.com/markchil/thesiscode/blob/master/make_bayes_time_res_plot.py
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Figure 3.16: Isosurfaces of (a) σD = 0.1D0 and (b) σV = 0.1|V0| in (στimp
, σtr, σb0.75

)
space. The coloring is proportional to σb0.75

in order to make the vertical changes
more visible. The white lines are logarithmically-spaced isolines of στimp

, σtr and
σb0.75

. Any point on the surface will enable the quantity to be reconstructed with
±10% 1σ uncertainty. Points below the surface enable a higher precision. The “right
angle” features correspond to the fact that, given sufficient precision for any two
quantities, the third quantity is redundant. For instance, the yellow region in the
back corner corresponds to both τimp and tr being known to very high precision. In
this case b0.75 is redundant, and does not need to be estimated to better than ±100%
uncertainty. This figure was produced using make_bayes_time_res_plot.py.
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Figure 3.17: Isosurfaces for σD = 0.1D0 (blue) and σV = 0.1|V0| (green). The surface
for V lies below that for D at all points, indicating that D will always be known
better than V for reasonably attainable uncertainties. This figure was produced
using make_bayes_time_res_plot.py.

small uncertainty, either b0.75 or tr must be known with small uncertainty, but not
both.

3.4.3 Determining the number of spatial channels, sampling rate and
noise level

3.4.3.1 Estimating the uncertainty in the profile broadness b0.75

The profile broadness b0.75 is defined as

b0.75 =
nZ(0.75)
nZ(0)

. (3.39)

Applying the uncertainty propagation equation yields an estimate of the variance:

σ2b0.75
= (

1
nZ(0))

2
σ2nZ(0.75) + (−

nZ(0.75)
nZ(0)2 )

2
σ2nZ(0) (3.40)

=
σ2nZ(0.75)

nZ(0)2
+

nZ(0.75)2σ2nZ(0)

nZ(0)4
. (3.41)

https://github.com/markchil/thesiscode/blob/master/make_bayes_time_res_plot.py
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Figure 3.18: Uncertainty in (a) D and (b) V as a function of σtr and σb0.75
for στimp

=
1 μs. The parameters corresponding to σD = 0.1D0 and σV = 0.1|V0| are indicated
by the green contours. This figurewas produced using make_bayes_time_res_plot
.py.
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Assume each density measurement is made with relative noise level u = σnZ /nZ :

σ2b0.75
=

u2nZ(0.75)2

nZ(0)2
+

nZ(0.75)2u2nZ(0)2

nZ(0)4
= 2u2b20.75. (3.42)

Note, however, that b0.75 can be estimated from every sample in the exponential
decay period. Therefore, the higher the time resolution is (assuming fixed noise
level) the better b0.75 can be estimated. Given a sampling interval Δt, there will be
of order τimp/Δt points in the decay. Therefore, the uncertainty in the mean of the
samples of b0.75 is

σb0.75
=

√
2Δt
τimp

ub0.75. (3.43)

Note that this analysis does not take into account the increased precision which
comes fromhavingmultiple spatial channels; this effect is handled in the next step but
is neglected here in order to demonstrate the general characteristics. The expected
σb0.75

is shown as a function of Δt and u in figure 3.19. As shown by the red contour,
σb0.75

< 10−2 (the level at which b0.75 begins to dominate the estimation of D and
V) can be obtained for a wide range of high noise levels and modest sampling rates,
indicating that given even a single additional point of spatial resolution, the spatial
information in b0.75 combined with the temporal information in τimp makes the
temporal information in tr redundant.

Note, however, that the assumption of Gaussian noise produces several patholo-
gies which have an impact on the interpretation of this and the following analysis.
The uncertainty propagation equation as used to obtain equation (3.41) assumes
that the distribution of the ratio is approximately Gaussian, when in fact the pdf of
z = x/y where x and y are uncorrelated Gaussian random variables is [436, 437]:

fZ(z) = b(z)d(z)
a3(z)

1
√2πσxσy (Φ(

b(z)
a(z)) − Φ(−b(z)

a(z))) +
exp(−c/2)
πa2(z)σxσy

(3.44)

a(z) =
√

z2
σ2x

+ 1
σ2y

, b(z) =
μx
σ2x

z +
μy
σ2y

(3.45)

c =
μ2x
σ2x

+
μ2y
σ2y

, d(z) = exp (
b2(z) − ca2(z)

2a2(z) ) . (3.46)

This is shown along with the assumed Gaussian distribution and the results of a
Monte Carlo simulation of the distribution in figure 3.20. The exact distribution
is somewhat skewed toward higher values and has a much longer right-hand tail
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Figure 3.19: Uncertainty in the profile broadness b0.75 as a function of the sam-
pling interval Δt and the relative noise level u = σy/y. The red dashed contour is
σb0.75

= 10−2, the point at which b0.75 and τimp are sufficient to reconstruct D and V
independent of tr. The green contour is σb0.75

= 6 × 10−3, the uncertainty used in
figure 3.12. This figure was produced using make_bayes_time_res_plot.py.

than the assumed Gaussian distribution. In fact, it can be shown that the right-hand
tail is sufficiently long that the mean and variance of this distribution are undefined
and the central limit theorem does not hold. This implies two things: first, when
interpreting the synthetic data sets used in the next section, standard estimators for
the mean and variance will not be reliable because they will be thrown off by tail
events. Second, the intuition which led to equation (3.43) is suspect.

In order to verify the intuition behind equation (3.43) a series ofMonte Carlo sim-
ulations was run. Consider the distribution of the mean and median of collections
ofN ∈ {101, 102, 103, 104} samples. For each value ofN , 104 data sets were generated,
and the histograms of the sample means and medians are given in figure 3.21. For
small numbers of points the distributions of the mean and median coincide, but
for larger numbers of points they begin to diverge because the exact distribution
of b0.75 is skewed to the right and has undefined mean and variance. The assumed
behavior from equation (3.43) approximately describes the location and width of
the distribution of the median, but the actual distribution has longer tails on both
sides. The width of the distribution for the mean does appear to go roughly like
1/√N , but the distribution does not converge to b0.75,0. Therefore, when describing
the distribution of b0.75 arising in a synthetic data set, it is necessary to use robust

https://github.com/markchil/thesiscode/blob/master/make_bayes_time_res_plot.py
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Figure 3.20: Assumed Gaussian distribution 𝒩 (b0.75,0, 2u2b20.75,0) from equa-
tion (3.41) (green solid curve), exact distribution from equation (3.44) (red
dashed curve) and normalized histogram of a Monte Carlo simulation of b0.75 =
nZ(0.75)/nZ(0). Note the logarithmic scale, which was used to make the differ-
ence in the tails of the distributions visible. The curves were constructed with
u = 0.1 and b0.75,0 = 0.326 (the value for D = 1m2/s, V = −10m/s). The Monte
Carlo simulation used 104 random draws for nZ(0.75) ∼ 𝒩 (b0.75,0, u2b20.75,0) and
nZ(0) ∼ 𝒩 (1, u2). The exact distribution has a longer right-hand tail than the
assumed Gaussian distribution and is therefore skewed to larger values. This figure
was produced using make_bayes_time_res_plot.py.

estimators like the median and interquartile range.

3.4.3.2 Estimating the uncertainty in D and V as a function of the system
parameters

In order to determine the diagnostic parameters which enable D and V to be re-
constructed, synthetic data sets were constructed with a variety of sampling rates,
noise levels and spatial resolutions. The sampling interval (i.e., the reciprocal of the
sampling rate) was varied over the range 10−4 s ≤ Δt ≤ 10−2 s, the relative noise
level was varied over the range 10−3 ≤ u ≤ 1 and the calculation was performed for
Ns ∈ {1, 3, 5, 32} spatial points. The 32 point case corresponds roughly to the spatial
resolution of the hirex-sr xics instrument on Alcator C-Mod, though note that this
analysis does not treat the details of the tomographic inversion necessary to convert

https://github.com/markchil/thesiscode/blob/master/make_bayes_time_res_plot.py
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Figure 3.21: Normalized histograms of the mean (blue) and median (green) of N
samples of b0.75 along with 𝒩 (b0.75,0, 2u2b20.75,0/N), the approximate result from
equation (3.43) (red dotted). Each panel represents the results from 104 synthetic
data sets, with each set containing the indicated number of points, N . This figure
was produced using make_bayes_time_res_plot.py.

the line-integrated measurements to local measurements.8 For the single point case
the value nZ(0) at the core of the plasmawas used. For the other cases the points were
equally spaced over 0 ≤ r/a ≤ 1. For each point in (Δt, u,Ns) space, 103 realizations
were constructed. The phase of each realization’s synthetic data with respect to the
injection was varied by taking the sampling to start at time t0 ∼ 𝒰 (tinj − Δt, tinj).
For Ns > 1, the ratios br/a = nZ(r/a)/nZ(0) were included in the inference, and the
coefficients of the linearization of br/a(D,V) were computed as described above. A
lower bound on the noise of σnZ = 10−3 ⋅ max(nZ) was used to avoid issues with the
calculation of tr.

For each realization, tr is determined by fitting a weighted cubic smoothing

8. The details of the uniqueness of tomographic inversions are beyond the scope of this thesis, but
note that section 3.6.2 demonstrates a successful reconstruction of D and V using line-integrated
measurements similar to those on Alcator C-Mod.
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spline to the noisy synthetic nZ(0, t). This spline is then evaluated over a dense
grid of time values to determine the time at which the impurity density reaches its
maximum value. This is done instead of using an optimizer both because it runs
faster and because the optimizer sometimes fails to find the correct solution.

The impurity confinement time τimp is found by adding up the data from all of
the spatial points to obtain a rough estimate9 of NZ(t), then fitting an exponential
to the data for t > tinj + tr + 10ms. This approach takes into account the increase
in precision of the estimate of τimp which comes from having multiple chords and
higher time resolution.

For Ns > 1, the broadness factors br/a are computed by taking the median of
br/a(t) = nZ(r/a, t)/nZ(0, t) over the same set of time points used to fit τimp. This
has the effect of accounting for the improvement in precision on br/a that comes
from having higher time resolution while avoiding the pathologies discussed in the
previous section.

For each point in (Δt, u,Ns) space, the estimate of tr is computed as the median
of the results from the realizations. The uncertainty in this estimate is given by
σtr = 1.349 ⋅ iqr, where iqr is the interquartile range (see section 1.4.2). Robust
estimators are used for this case because there were occasionally poor spline fits
which produced outliers which threw off the fit. For Ns > 1, robust estimators
are also used to find br/a and σbr/a in order to avoid the pathologies discussed in
the previous section. Conventional estimators (mean, standard deviation) are used
to obtain τimp and στimp

. The uncertainties in D and V are then obtained using
equation (3.34) and equation (3.35).

Note that all of the following discussion of expected uncertainties in the various
observables concerns only the uncertainties arising from random errors in the di-
agnostic signals. Systematic effects arising from diagnostic calibration errors and
variation of the background plasma conditions are likely to dominate the uncertain-
ties in quantities such as τimp and b0.75 which are determined by averages over many
points during the exponential decay period. Unfortunately this framework is unable
to handle this class of uncertainties.

The uncertainties in τimp are given in figure 3.22. As expected, decreasing Δt or
u or increasing Ns allows τimp to be determined with a smaller uncertainty.

The uncertainties in tr for the single chord case are given in figure 3.23. While
the results are somewhat ragged as a result of the distribution being somewhat
non-Gaussian because of poor spline fits when determining tr, the behavior is as

9. This calculation does not include the quadrature weights needed to be a proper estimate of NZ(t). But,
the density at each point goes like Aie

−t/τimp, so fitting a line to ln ∑i Aie
−t/τimp still yields the correct

impurity confinement time.
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Figure 3.22: Uncertainty in τimp as a function of Δt, u and Ns. The color scale for
all of the figures is the same and is set to saturate at the maximum value in the
Ns = 32 plot in order to make the changes visible. The green contour corresponds
to στimp

= 0.3ms, the value used in figure 3.12. This figure was produced using
make_bayes_time_res_plot.py.

expected: sampling faster or with lower noise allows tr to be reconstructed with a
smaller uncertainty. But for Δt ≳ 5ms it is impossible to adequately reconstruct tr
accurate to the 0.5ms level even with very low-noise measurements. The required
time resolution is approximately half of the rise time, which makes sense in light of
the Nyquist sampling theorem.

The observed uncertainties in b0.75 are given in figure 3.24. The results are in
very good agreement with figure 3.19 and equation (3.43). The observed uncertain-
ties are slightly lower than shown in figure 3.19 because data from more than one
impurity confinement time were included in the estimate. When the code was run
without robust estimators the results were very far off, illustrating the importance of
accounting for the pathologies noted in the previous section.

The expected uncertainties in D and V are given in figure 3.25 and figure 3.26,
respectively. For the Ns = 1 case, the uncertainties are dominated by σtr , and hence
a very fine time resolution and low noise level is required. For the Ns = 3 case the
reliance on tr has almost been completely removed, and it is possible to use a much
slower sampling rate: the conventional intuition that a high time resolution during
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Figure 3.23: Uncertainty in tr as a function of Δt and u for Ns = 1. (Additional
chords do not help to constrain tr.) The green contour corresponds to σtr = 0.5ms,
the value used in figure 3.12. The ragged shape of the contour is the result of poor
fits for tr when few points are available in the rise. This figure was produced using
make_bayes_time_res_plot.py.
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Figure 3.24: Uncertainty in b0.75 as a function of Δt and u. The color scale is set
to be the same as figure 3.19. The red dashed contour is σb0.75

= 10−2, the point at
which b0.75 and τimp are sufficient to reconstruct D and V independent of tr. The
green contour is σb0.75

= 6 × 10−3, the precision used in figure 3.12. This figure was
produced using make_bayes_time_res_plot.py.
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Figure 3.25: Uncertainty in D as a function of Δt, u and Ns. The color scale is the
same for all of the subplots and was set to saturate at 0.5m2/s in order to make the
changes visible. The green contour corresponds to σD = 0.1D0. The red dashed line
represents a typical hirex-sr signal level, and the red circle is the Δt = 6ms time
resolution the instrument is normally operated at for impurity transport studies.
Similarly, the cyan dotted line and triangle represent a typical vuv spectrometer
signal level. This figure was produced using make_bayes_time_res_plot.py.

the rise is necessary to separate D from V appears to be incorrect, as mediocre
time resolution (simply sufficient to estimate τimp) combined with modest spatial
resolution should be able to reconstruct D and V accurate to better than 10%.

In order to gain some intuition for the parameter ranges indicated, consider a
diagnostic which is dominated by Poisson noise (i.e., photon statistics): the number
of photons reaching the detector is Poisson-distributed, with an average rate of
λ photons per second. Therefore, the relative noise level corresponding to data
collected during a sampling interval Δt is

u = 1
√λΔt

. (3.47)

The hirex-sr diagnostic on Alcator C-Mod typically has a relative uncertainty of
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Figure 3.26: Uncertainty in V as a function of Δt, u and Ns. The color scale is the
same for all of the subplots and was set to saturate at 15m/s in order to make the
changes visible. The green contour corresponds to σV = 0.1|V0|. The red dashed
line represents a typical hirex-sr signal level, and the red circle is the Δt = 6ms
time resolution the instrument is normally operated at for impurity transport studies.
Similarly, the cyan dotted line and triangle represent a typical vuv spectrometer
signal level. This figure was produced using make_bayes_time_res_plot.py.

about 1% to 5% at the 6ms sampling interval used for impurity transport studies; the
relative noise as a function of time resolution extrapolated from this is shown as
the dashed red curve in figure 3.25 and figure 3.26. The xeus vuv spectrometer
typically obtains a relative uncertainty of about 1% to 2% with a 2ms sampling
interval; the relative noise for this instrument is shown as the dotted cyan curve.
The sxr instruments on Alcator C-Mod sample at 4 μs and have enough signal
strength to lie off the scale of the figures. The xics and vuv diagnostics are only just
inside the envelope of being able to reconstruct D and V to the ±10% level, but the
sxr instruments should be more than capable of delivering this level of precision,
provided that the atomic physics model used to infer nZ from the sxr emissivities
is sufficiently accurate. Therefore, this analysis implies that sxr instruments with
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high throughput and high temporal and spatial resolution have the best chance of
being able to reconstruct D and V . But because of the complexity of the atomic
physics model necessary to interpret sxr measurements, spectroscopic diagnostics
are invaluable both as an extra signal to constrain the inference and as a cross-check
of the results from the sxr measurements using simpler atomic physics.

Another interesting point is that the contours of constant σD and σV for the
cases where tr is redundant are also roughly contours of 1/√λΔt: changing the
averaging of the data makes plots look nicer, but does not add or remove data from
the inference. To understand this result, note that both br/a and τimp represent
averages over the samples,10 and hence have uncertainties which are expected to
go like 1/√N , where the number of samples N will go like Δt. Therefore, binning
a Poisson-distributed signal over a larger window will increase the precision in the
individual measurements by a factor of √Δt while decreasing the precision in the
average of those quantities by the same factor.

Additional spatial and temporal resolution will, of course, be necessary to recon-
struct more complicated profile shapes for D and V . Note that this framework can
be used to estimate the requirements to infer profiles with many more parameters
than what was shown here, but the curse of dimensionality makes the use of a dense
grid in parameter space to evaluate yi(D,V) very computationally expensive. A
better strategy for such cases would be to compute the derivatives needed for the
linearization with just a few strahl runs using finite differences, then use a few
more runs to check the accuracy of the linearization.

3.5 Inferring impurity transport coefficient profiles is an
inverse problem

3.5.1 The structure of the forward model

The previous sections used the very simple profiles given in equation (3.14) to illus-
trate the basic features of the impurity transport equation given in equation (3.7).
This section expands the problem to inferring the parameters11 of some arbitrary
pair of functionsD(r) and V(r). The structure of the problem is shown in figure 3.27:

10. The impurity confinement time represents an average over samples in the sense that the slope of lnNZ
is estimated from all of the samples as 1/τimp = − cov[t, lnNZ]/ var[t]. For homoscedastic uncertainties
(which are assumed in the present analysis) the standard deviation of the estimate for 1/τimp goes down
like 1/√N .

11. In the rest of this chapter, the notations D and V are taken to refer to the complete sets of parameters
for the diffusion and convection profiles, respectively.
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Figure 3.27: Diagram of the forward model and probability model used to infer
the impurity transport coefficients D and V from spectroscopic measurements s =
∫ ε dl. Note that smay bemeasured alongmany chords. The forwardmodel converts
guesses for D and V into predictions of the diagnostic signals using the strahl
impurity transport code and a synthetic diagnostic. The probability model uses the
output from the forward model ̂s together with the experimental measurements s
to compute the likelihood function: the probability of the data given the guess for
D and V .

the plasma is assumed to exhibit behavior described by equation (3.7) for some true
profiles D(r), V(r). What is measured directly is the line-integrated spatiotemporal
evolution of the line radiation emitted by the injected impurity, the impurity source
function, and the background ne and Te profiles. The diagnostic signals s can be
thought of as being functions ofD andV : s(t) = F(D,V). This is therefore an inverse
problem [438–441]: given measurements of s(t), the objective is to find the set of
inputs D, V which gave rise to it. Or, in the presence of noise and/or a mismatch
between the assumed forms for D and V and reality, the objective is to reconstruct
the D and V which best match the observations.

Note that the function F(D,V) is referred to as the forward model. In order to
relate the predicted diagnostic signals ̂s to the observations s it is also necessary
to construct a probability model which computes the likelihood of observing s as a
function of D and V . Bayesian inference was in fact developed to solve problems
like this: it lets us convert the likelihood fs|D,V (s|D,V) into the posterior distribution
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fD,V|s(D,V|s). A key point of solving inverse problems is that, for a complicated
forward model like the one used here, we do not know a priori whether or not
F is uniquely invertible: there may be multiple solutions which describe the data
equally well. It is therefore important to use the probability model with an inference
procedure which accounts for this possibility.

In practice the diagnostic signals are usually line integrals along various lines of
sight:

si(t) = ∫li
εi(r, t) dl, (3.48)

where si is the ith diagnostic signal, li is the corresponding diagnostic line of sight
and εi(r, t) is the local emissivity profile integrated against the spectral response of
the diagnostic. With measurements like the hirex-sr xics and xtomo sxr diode
arrays which have many lines of sight, two approaches can be taken to handle the
line-integrated data: the data can be included in the probability model as-is or it
can be tomographically inverted before comparing to the forward model. Including
the data as-is essentially solves the tomography problem at the same time it solves
the inverse problem to get D and V . This has the advantage of requiring fewer
assumptions and allowing the solution procedure to fully capture the uncertainty
that comes from the potential for non-uniqueness in the tomographic inversion, and
was therefore used in the previous work on Alcator C-Mod. The disadvantage of this
approach is that non-uniqueness makes it much more difficult to solve the inverse
problem.

3.5.2 The spectral model

The spectral model is a key part of the synthetic diagnostic used to convert the
charge state density profiles predicted by strahl, ̂nZ,i(r, t), into local emissivities
̂ε(r, t) which are then integrated along the relevant line of sight to yield predicted

diagnostic signals ̂s(t) according to equation (3.48). There are two parts of the
spectral model: one to handle line radiation as seen by spectroscopic diagnostics
and one to handle emission seen by broadband soft x-ray instruments.

3.5.2.1 Line radiation

The line radiation model handles collisional excitation from the ground state and
simply uses photon emission coefficients (pec) from the adas [442] database to
compute the emissivity according to

ε = Pij(Te, ne)nenZ,i, (3.49)
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Figure 3.28: Transmission of 50 μm beryllium filter used in xtomo 1, 3 and 5. The
lower scale is linearly calibrated in energy units and the upper scale gives the corre-
sponding wavelength units. The data are from [443, 444]. This figure was produced
using plot_xtomo_filter.py.

where Pij is the pec of the jth transition of charge state i. This yields the volumetric
rate of photon emission (photons/(sm3)), and can be converted to W/m3 by multi-
plying the result by hc/λj. This is then converted to the signal received at the detector
using the line integration capabilities in TRIPPy [362].

3.5.2.2 Soft x-ray emission

The model for sxr emission is necessarily more complicated: ensuring one has all of
the lines from a given impurity in the diagnostic’s spectral range is a much more dif-
ficult task than analyzing a single transition. For the purposes of generating synthetic
data for this thesis, a very basic spectral model was constructed. This will need to be
expanded in the ways noted below to adequately handle real experimental data, but
the present state of development is sufficient for the construction of synthetic datasets.
In particular, bremsstrahlung and recombination radiation were not computed as
part of the simplified model: only line radiation is included. The transmission of the
50 μm beryllium filter used in the xtomo 1, 3 and 5 diagnostics on Alcator C-Mod
is shown in figure 3.28.12 As shown in the figure, only lines with E ≳ 1 keV need
to be included in the model. This excludes all but the lines from He- and H-like
calcium. The edge xtomo diagnostics (xtomo 2 and 4) have thinner filters to allow
lower energy lines through, but these diagnostics were not included in the analysis

12. Note that the response curve of the detector itself is not accounted for in this basic model.

https://github.com/markchil/thesiscode/blob/master/plot_xtomo_filter.py
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because the radiation from fluorine (recall that CaF2 is what is injected in practice)
is expected to dominate those signals.

The He-like calcium emission is computed using the extensive collection of
collisionally-excited lines obtained from adas. Note that this underestimates the
forbidden line, whose upper level can be populated by radiative recombination,
which is often quite strong in the outer portion of the plasma [420]. This will need to
be implemented in order to properly handle experimental data, but was not included
in the synthetic data in order to simplify the analysis.

Data from adas for the H-like emission were not available and these lines are
instead handled using a simple atomic physics model adapted from the idl program
lines.pro used for many years at the mit psfc [45]. The energy levels of an H-like
atom are [445]:

En = −hcRM
Z2

n2
, (3.50)

where n is the principal quantum number, hcRM is the Rydberg energy for nuclear
mass M:

hcRM = hcR∞
M

M + me
, (3.51)

and hcR∞ = 13.6 eV is the Rydberg energy. This means that the transitions from
upper level n2 to lower level n1 will emit a photon with energy

E21 = hcRMZ2
(

1
n21

− 1
n22) . (3.52)

Transitions with the same lower level n1 are said to form a series, with the Lyman
series corresponding to n1 = 1. To denote a specific member of a series, lowercase
Greek letters are used to denote the upper level n2. So, the so-called Lyman alpha
(“Ly α”) line corresponds to n2 = 2, n1 = 1. Note that the highest-energy line in a
spectral series (the series limit) is

E∞1 = hcRM
Z2

n21
. (3.53)

The series limits for calcium are given in table 3.1. From this table and figure 3.28, it
is clear that only the Lyman and Balmer series need to be considered to model the
emission for xtomo 1, 3 and 5. For simplicity, the spectral model used to produce
the synthetic data only includes the Lyman series. Furthermore, the model ignores
the fine structure and satellite lines: only the 1s − np transitions are included.
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Table 3.1: Series limits for calcium.

Name n1 E∞1 [keV]

Lyman 1 5.4
Balmer 2 1.4
Paschen 3 0.60
Brackett 4 0.34
Pfund 5 0.22
Humphreys 6 0.15

It is assumed that all upper states are populated by electron impact excitation
and then promptly decay through spontaneous emission of a photon. Therefore,
the photon emission rate is equal to the excitation rate. Mewe [446] provides the
expression

Sij ∝
fijg(y)e−y

T1/2
e Eij

, y =
Eij
Te

(3.54)

g(y) = A + (By − Cy2 + D)eyE1(y) + Cy, E1(y) = ∫
∞

1
t−1e−yt dt, (3.55)

where Sij is the excitation rate coefficient, fij is the oscillator strength, g(y) is the
integrated Gaunt factor, Eij is the transition energy, and A, B, C and D are coef-
ficients provided in [446]. The oscillator strength is the same along the H-like
isoelectronic sequence [447], so the values given for hydrogen in table 3.1(b) of [448]
are all that is needed to evaluate equation (3.54). Because fij drops off so rapidly at
higher energy levels, it is only necessary to include Ly α through Ly ε. A simulated
spectrum (weighted by the filter transmission) is given in figure 3.29. The synthetic
xtomo diagnostic then adds up the contributions throughout the entire spectral
range to yield the total sxr emissivity, which is then integrated along the diagnostic
lines of sight using TRIPPy.

3.5.3 The probability model

3.5.3.1 The likelihood and the posterior distribution

The noise on the measurements is taken to be Gaussian and independently dis-
tributed with heteroscedastic uncertainties σi, such that the likelihood of observing
any given signal si (in this section i is taken to be a multi-index which spans both
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Figure 3.29: Synthetic spectrum weighted by the 50 μm beryllium filter transmis-
sion. The spectrum is for t − tinj = 17ms, r/a = 0 and was generated using the
transport coefficient profiles given in equation (3.14). This figure was produced
using make_synth_spectrum_plot.py.

sight lines and time points) is given by

fsi|D,V ,ne,Te
(si|D,V , ne,Te) = 𝒩( ̂si(D,V , ne,Te), σ2i ). (3.56)

The likelihood of the entire data set s ∈ Rn is then

fs|D,V ,ne,Te
(s|D,V , ne,Te) = 1

(2π)n/2 ∏n
i=1 σi

exp
(

−1
2

n

∑
i=1

(si − ̂si(D,V , ne,Te))
2

σ2i )
.

(3.57)

In order to obtain the posterior distribution for D and V it is necessary to select a
prior distribution, fD,V ,ne,Te

(D,V , ne,Te). Assume independent prior distributions
for ne and Te:

fD,V ,ne,Te
(D,V , ne,Te) = fD,V (D,V)fne

(ne)fTe
(Te). (3.58)

The prior distribution for D and V used in practice is designed to restrict D and
V to physically reasonable values and to impose the conditions dD/dr|r=0 = 0 and
V(0) = 0. All of the information about the inference is contained in the posterior

https://github.com/markchil/thesiscode/blob/master/make_synth_spectrum_plot.py
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distribution, computed from Bayes’ rule:

fD,V ,ne,Te|s(D,V , ne,Te|s) =
fs|D,V ,ne,Te

(s|D,V , ne,Te)fD,V (D,V)fne
(ne)fTe

(Te)
fs(s)

.

(3.59)

Assume that ne and Te are represented as Gaussian processes so their prior distribu-
tions are multivariate normal:

fne
(ne) = fne|𝒫(ne|𝒫) = 𝒩 (μne|𝒫,Σne|𝒫) (3.60)

fTe
(Te) = fTe|𝒫(Te|𝒫) = 𝒩 (μTe|𝒫,ΣTe|𝒫), (3.61)

where 𝒫 represents the observed profile data from Thomson scattering, etc. These
prior distributions can be found in a separate step using the procedures described
in chapter 2: the mean vectors and covariance matrices are given by equation (2.17).

3.5.3.2 Efficient handling of the uncertainties in the ne and Te profiles

The machinery given in section 2.3.8 enables these profiles to be represented in a low-
dimensional space: equation (2.53) can be used to represent the ne and Te profiles
with a truncated eigendecomposition. Specifically, the vector of ne values evaluated
on some dense grid is given by

ne = QΛ1/2u + μne|𝒫, (3.62)

where

Σne|𝒫 = QΛQ−1 (3.63)

u ∼ 𝒩 (0, I). (3.64)

The eigenvalue spectra of the ne and Te profiles are given in figure 3.30. The spectra
decay quite rapidly, indicating that only the first few elements of u are needed to
represent these profiles. Therefore, instead of needing to use 100 variables with
a correlated prior distribution, the ne profile can be represented with about four
variables having uncorrelated, standard normal prior distributions. Finally, the
desired result is the posterior distribution for D and V marginalized over ne and Te:

fD,V|s(D,V|s) = ∫ fD,V ,ne,Te|s(D,V , ne,Te|s) dne dTe. (3.65)

This integral can be performed efficiently using Markov chain Monte Carlo (mcmc)
techniques, as described in the next section.
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Figure 3.30: Eigenvalue spectra for the ne and Te profiles. The square root of the
eigenvalue is shown as this is what determines the extent to which the associated
eigenvector can pull the value away from the mean. (Recall that the eigenvectors
are normalized.) The spectra correspond to the evaluation of the fitted profile at
100 equally-spaced points. Note that a factor of 103 times machine epsilon (i.e.,
the floating point precision) was added to the diagonal of the covariance matrix to
stabilize the calculation, which is what causes the spectrum to become a flat line for
the higher eigenvalues. This figure was produced using plot_eigenvalues.py.

https://github.com/markchil/thesiscode/blob/master/plot_eigenvalues.py
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3.5.3.3 Handling multiple injections

Aswas noted in section 3.1, binningmultiple injections together to produce “sawtooth-
averaged” estimates of transport coefficients is a questionable practice. That being
said, there is much utility in being able to combine the data from multiple injections
to better constrain the inference. Assuming that an appropriate sawtooth model
is included in the forward model, data from multiple injections can be included in
equation (3.57) simply by performing multiple strahl runs with the appropriate
sawtooth timing to properly compute ̂s(t) for each injection. For the sawtooth model,
one could either use the model which is already included in strahl which simply
flattens the impurity density profile inside of the sawtooth inversion radius during
each crash [67, 162, 185, 223], or one could adopt the approach used in [72, 103, 117, 119,
172, 173, 215, 449] and assume that the transport coefficients are transiently increased
during the sawtooth crash. This framework would then be capable of inferring both
the quiescent transport coefficients as well as the perturbed transport coefficients
which occur during the sawtooth crash.

3.5.4 Performing the inference

The posterior distribution equation (3.65) contains all of the information that is
known about D and V given the observations s and the prior information contained
in fD,V ,ne,Te

(D,V , ne,Te). In principle, a brute-force evaluation of fD,V|s(D,V|s) over
the entire parameter space would yield a clear picture of the uncertainty in D and V ,
but this is not a computationally tractable approach.

There are two steps to performing the inference:

Parameter estimation is the process whereby the parameters and their uncertain-
ties are estimated. Just like in section 2.3.6, it is possible to either use a point
estimate such as the maximum a posteriori (map) estimate,

̂Dmap, ̂Vmap = arg max
D,V

fD,V|s(D,V|s), (3.66)

or an mcmc technique which produces samples {D(i),V (i)} from which sum-
mary statistics can be computed. When using a point estimate, the uncer-
tainties are often taken to be given by the inverse Hessian matrix which is
estimated by derivative-based optimizers such as Levenberg-Marquardt and
bfgs [302].

Model selection is the process whereby multiple models are compared to select the
onewith the appropriate level of complexity to describe the observed data. Too
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simple of a model will be too inflexible to describe the real data and can lead
to an underestimation of the posterior uncertainty. Too complex of a model
will infer more structure in the solution than is physically justified and can
make the parameter estimation step computationally intractable. Whilemodel
selection was neglected for the profile fitting task in section 2.3.6, section 3.6.7
shows that it is very important when inferring impurity transport coefficient
profiles.

3.5.4.1 The previous attempt at obtaining a point estimate and its uncertainty

As described in section 2.6, the previous work [18, 19, 55, 305] used a point estimate
which attempted to account for the uncertainty in ne and Te. First, an ensemble of
N realizations of ne and Te was produced using one of the methods described in
section 2.3.8. In order to obtain a smooth curve from a piecewise linear spline, the
knots for each realization were randomlymoved. For each realization, the maximum
of the likelihood fs|D,V ,ne,Te

(s|D,V , ne,Te) was determined by minimizing

χ2 ∝ −2 ln fs|D,V ,ne,Te
(s|D,V , ne,Te) =

n

∑
i=1

(si − ̂si(D,V , ne,Te))
2

σ2i
(3.67)

with ne and Te held fixed. The mean and variance of the estimates for D and V were
then found using weighted estimators (shown here just for D):

E[D] =
∑N

i=1 wi ̂Dmap
i

∑N
i=1 wi

(3.68)

var[D] =
∑N

i=1 wi( ̂Dmap
i − E[D])2

∑N
i=1 wi

, (3.69)

where the weights are

wi =
min χ2

χ2i
. (3.70)

This procedure suffers from a number of issues:

1. The width of the posterior distribution for any given realization of ne and
Te is not accounted for: this ignores the uncertainties in the spectroscopic
measurements as well as the possibility that there are multiple values of D and
V which describe the data equally well.
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2. The knot positions are not inferred in a direct sense: they are only inferred
in so far as realizations with worse knot positions will be weighted less in the
weighted mean.

3. The use of min χ2/χ2i for the weights is not, in general, a valid way of computing
the marginalized values of D and V . That being said, the solutions generally
all had χ2 of about the same order of magnitude, so the old approach had the
effect of approximating the correct approach given below.

3.5.4.2 An improved framework for obtaining a point estimate and its
uncertainty

Abetter approachwould be to find themaximumof the conditional posterior density
(i.e., the map estimate) for each realization of ne, Te:

fD,V|s,ne,Te
(D,V|s, ne,Te) ∝ fs|D,V ,ne,Te

(s|D,V , ne,Te)fD,V (D,V) (3.71)

ln fD,V|s,ne,Te
(D,V|s, ne,Te) ∝ −1

2

n

∑
i=1

(si − ̂si(D,V , ne,Te))
2

σ2i
+ ln fD,V (D,V),

(3.72)

where the knot positions are included in the parameters of D and V (and the best
locations are therefore found during the optimization) and it has been assumed
that the prior distribution for D and V is independent of ne and Te. Assuming that
the distribution is symmetric, the map estimate will be equal to the (conditional)
posterior mean:

̂Dmap, ̂Vmap = arg max
D,V

fD,V|s,ne,Te
(D,V|s, ne,Te) = E[D,V|s, ne,Te]. (3.73)

Given the assumption of symmetry and furthermore assuming there is only one
mode, the width of the posterior distribution can be estimated from the inverse of
the Hessian matrix estimate by most derivative-based optimizers. This means that
we are equipped to estimate var[D,V|s, ne,Te], which includes the contributions to
the posterior uncertainty from the uncertainties in the diagnostic measurements.
The marginalized estimate for D and V can then be found from the law of iterated
expectations:

E[D,V|s] = Ene,Te [E[D,V|s, ne,Te]] = 1
N

N

∑
i=1

E[D,V|s, ne,i,Te,i], (3.74)
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where all samples are weighted equally because ne and Te were sampled according
to fne,Te|𝒫(ne,Te|𝒫). The uncertainty is then given by the law of total variance:

var[D,V|s] = Ene,Te [ var[D,V|s, ne,Te]] + varne,Te [E[D,V|s, ne,Te]] (3.75)

= 1
N

N

∑
i=1

var[D,V|s, ne,i,Te,i]

+ 1
N − 1

N

∑
i=1

(E[D,V|s, ne,i,Te,i] − E[D,V|s])
2. (3.76)

While this approach rectifies the shortcomings identified in the previous section,
it still suffers from the fact that free-knot splines lead to non-identifiable posterior
distributions (see section 3.6.4) and fails to account for the possibility that the pos-
terior distribution is multimodal. Furthermore, it is shown in section 3.6.5 that
the contribution of ne and Te to the posterior uncertainty is minimal: the previous
results can be explained purely in terms of the different choices of knot locations.

3.5.4.3 Fully characterizing the posterior distribution using multimodal nested
sampling

The approach outlined in the previous section is only valid when the posterior distri-
bution is unimodal and approximately Gaussian. In practice, application of the map
estimate fails to yield unique solutions and does not rectify the problems discussed in
section 3.1. Therefore, it is necessary to fully characterize the posterior distribution
using Markov chain Monte Carlo (mcmc) sampling. As described in section 2.3.6,
mcmc techniques can be used to draw samples from unnormalized probability dis-
tributions such as the posterior distribution equation (3.59). These samples can then
be post-processed to yield marginalized estimates such as equation (3.65).

The affine-invariant ensemble sampler [353, 354] which was used for profile
fitting with Gaussian process regression proved to be very inefficient for the high-
dimensional, potentially multi-modal posterior distributions encountered when
inferring D and V . Parallel tempering [450] and adaptive parallel tempering [451]
capabilities built around the affine-invariant ensemble sampler were also tested, but
these approaches were far too computationally expensive to yield useful results. The
MultiNest algorithm [452–455] was found to have better performance than any of
the ensemble sampler-based alternatives, but still struggled when confronted with
some of the high-dimensional, non-identifiable cases.13 The MultiNest algorithm

13. Refer to [456] for a comparison of the Metropolis-Hastings, affine-invariant ensemble sampling and
MultiNest algorithms applied to various problems.
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has the advantage that it is built specifically to handle non-identifiable and/or multi-
modal posterior distributions. Furthermore, the algorithm computes the evidence
fs|ℳ(s|ℳ) of the model ℳ (i.e., the specific choice of basis functions, knot locations,
etc.), which can then be used to directly select the best model (see section 3.6.6).

Just like in chapter 2, using mcmc14 to marginalize over the parameters of the
model is themost rigorous way to get an accurate estimate of the uncertainty. Further-
more, it offers an easy path forward to marginalize over other nuisance parameters
such as uncertainties in the atomic physics parameters [457] and calibration con-
stants for absolutely-calibrated detectors.

3.6 Application to synthetic data

The following sections test the MultiNest-based approach to various synthetic
datasets. Section 3.6.1 proves the concept using local measurements of the total
impurity density and compares the results of the full model to the linearized model
obtained in section 3.4. Section 3.6.2 proves the concept using line-integrated mea-
surements equivalent to the diagnostic situation on Alcator C-Mod. Section 3.6.3
then uses the line-integrated synthetic data to confirm the hypothesis from sec-
tion 3.4.3.2 that temporal resolution is unimportant given sufficient spatial resolution.
Section 3.6.4 demonstrates the pathologies which can arise from the use of free knot
splines. Section 3.6.5 demonstrates the surprising result that the background ne and
Te profiles have little effect on the inferredD andV profiles and explains the previous
results in terms of the sensitivity of the solution to the knot locations. Section 3.6.6
demonstrates the use of the model evidence to select the model complexity in a very
simple case, and section 3.6.7 applies the whole framework to synthetic data which
matches the complexity inferred by the previous work.

3.6.1 Basic case with local impurity density measurements

A synthetic data set was constructed using the basic transport coefficient profiles
given in equation (3.14). The total impurity density nZ was measured at five points
linearly spaced over 0 ≤ r/a ≤ 1. The sampling interval was Δt = 6ms and the noise
level was 5%, consistent with the hirex-sr xics. As shown in figure 3.26, this should
be capable of reconstructing D and V accurate to better than 10% uncertainty. The
prior distribution used was

fD,V (D,V) = 𝒰 (D; 0m2/s, 10m2/s)𝒰 (V ; −100m/s, 10m/s). (3.77)

14. Technically MultiNest is not a pure mcmc sampler, but the term is used loosely in this context to
refer to techniques which produce samples from the posterior distribution.
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Table 3.2: Summary statistics for D and V under various conditions.

Case Parameter [units] Mean 95% interval

Basic D [m2/s] 1.002 [ 0.9911, 1.014]
V [m/s] −10.05 [ −10.31 , −9.797]

Line-integrated D [m2/s] 1.000 [ 0.9957, 1.006]
V [m/s] −10.01 [ −10.12 , −9.916]

No rise D [m2/s] 1.011 [ 0.9977, 1.025]
V [m/s] −10.23 [ −10.53 , −9.951]

Free ne, Te D [m2/s] 0.9981 [ 0.9906, 1.005]
V [m/s] −9.966 [ −10.14 , −9.777]

Table 3.3: Comparison of uncertainty estimates from the linearized Bayesian anal-
ysis and MultiNest. The standard deviations are five times smaller for the full
MultiNest-based analysis, but the correlation coefficient is the same.

Method σD [m2/s] σV [m/s] σDV [m3/s2] ρDV
Linearized 0.030 0.69 −0.020 −0.97
MultiNest 0.0059 0.13 −0.00072 −0.97

The MultiNest sampler was used with 100 live points, the default sampling ef-
ficiency of 0.8 and the default tolerance of 0.5 on the log-evidence. The posterior
distribution is shown in figure 3.31, the marginalized posterior D and V profiles are
given in figure 3.32 and summary statistics for the posterior distribution are given in
the first block of table 3.2 (labelled “Basic”).

The uncertainty estimates from the linearized analysis and the full analysis are
given in table 3.3. As shown in the tables and figure 3.32, the linearized analysis
is pessimistic, and the transport coefficients are known to about five times higher
precision than was expected from the linearized analysis. It makes sense that the full
analysis would have smaller uncertainty as it includes all of the data. The correlation
betweenD andV is the same, however: the result is a tilted ellipse similar to what was
predicted in figure 3.12. This confirms that the linearizedmodel gets the uncertainties
correct to within an order of magnitude, and that it captures the correct intuition
about which terms have the most influence on the result.
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Figure 3.31: Posterior distribution for D and V inferred from five local measure-
ments. MultiNest’s outputs are slightly different from those of the affine-invariant
ensemble sampler used in chapter 2. The posterior samples are given as samples
combined with weights representing the posterior density of that sample. The sam-
ples are shown as the blue solid curve at the bottom and the weights are shown as
the red dashed curve at the bottom. Samples with weights less than 10−2 times the
maximum weight were not included in the histogram so as to focus on the center of
the distribution. This is indicated by the vertical red bar in the bottom plots. The
posterior mean is shown as the blue point and vertical lines and the true value is
shown as the green point and vertical lines. The green curves in each of the plots
correspond to the linearized estimate (equation (3.34) through equation (3.36)): in
the univariate plots the green curve is the predicted pdf and in the bivariate plot
the two green lines are the edges of the 95% confidence ellipse, similar to what was
shown in figure 3.12. The uncertainties estimated from the full model are about five
times smaller than those estimated from the linearized analysis, but the correlation
betweenD andV (i.e., the angle of the ellipse) is identical. This figure was produced
using settings_1101014006_3_basic.py and post_process_basic_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_3_basic.py
https://github.com/markchil/thesiscode/blob/master/post_process_basic_MCMC.py
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Figure 3.32: Marginalized posterior D and V profiles inferred from five local
measurements. The true (blue solid line) and inferred (green dashed line with
±1σ and ±3σ envelopes) profiles overlay very well and the uncertainty envelopes
are rather narrow: there are only a few combinations of D and V which fit the
data. This figure was produced using settings_1101014006_3_basic.py and
post_process_basic_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_3_basic.py
https://github.com/markchil/thesiscode/blob/master/post_process_basic_MCMC.py
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Figure 3.33: Spectrometer lines of sight for Alcator C-Mod shot 1101014006, the
shot used as the basis for the synthetic impurity transport data. hirex-sr has 32
lines of sight organized in eight bundles. xeus and loweus only have a single chord
each. This figure was produced using plot_hirex_chords.py.

3.6.2 Basic case with line-integrated spectral measurements

In order to assess the effect of using line-integrated, spectrally-resolved measure-
ments, the synthetic diagnostic described in section 3.5.2 was used to produce syn-
thetic spectroscopic data. All 32 chords of the hirex-sr xics were used, viewing the
0.32 nm He-like calcium line with 6ms time resolution. The xeus vuv spectrometer
was represented using a single chord viewing seven Li-like calcium lines covering
1.8 nm ≤ λ ≤ 2.0 nm. The loweus vuv spectrometer was represented using a
single chord viewing the 19 nm Be-like calcium line. Both of the vuv instruments
were represented as having 2ms time resolution. The spectrometer lines of sight
are shown in figure 3.33. Synthetic xtomo sxr data were not included. The results

https://github.com/markchil/thesiscode/blob/master/plot_hirex_chords.py
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are given in figure 3.34 and the second block (labelled “Line-integrated”) of table 3.2.
With the extra spatial resolution provided by the 32 hirex-sr chords and the two
vuv chords, the uncertainties onD and V are very small. The uncertainty envelopes
on D and V are too small to be visible, so a plot of the marginalized profiles is not
given.

3.6.3 Resolving the rise does not matter

In order to verify the hypothesis that the time resolution (and therefore the ability
to resolve the details of the rise) does not matter in the presence of sufficient spatial
resolution, a synthetic data set including only the data from 20ms after the injection
and on was constructed. The diagnostic configuration was otherwise the same as the
previous section in order to represent the situation on Alcator C-Mod. The results
are given in figure 3.35 and the third block (labelled “No rise”) of table 3.2. The
uncertainties are higher than they were in the case where the rise is resolved and the
posterior mean does not quite match the true value, but the 95% posterior interval
encompasses the true value and the parameters D and V are uniquely constrained
to lie in reasonable posterior intervals. This has a critical implication for experiment
design: having spatial resolution replaces the information which would be conveyed
by having enough temporal resolution to resolve the rise. Therefore, instead of
binning injections in the manner used for previous work on Alcator C-Mod, it
should be possible to use a single injection combined with a proper sawtooth model
to perform the inference.

3.6.4 Free knots produce non-identifiable posterior distributions

In order to obtain a flexible way of parameterizing the D and V profiles while still
being able to exercise control over the allowable amount of spatial structure, it is
tempting to use a free-knot spline. Here, the (internal) knot locations are treated as
free parameters to be inferred along with the spline coefficients.15 This can, however,
lead to pathologies which make the inference much more difficult. To see this,
assume that the basicD andV profiles as shown in figure 3.1 are the true profiles. But
at the start of the inference this is not known. Consider the use of a free knot spline
with one internal knot at location r/a = t with prior distribution ft(t) = 𝒰 (t; 0, ac/a).
The value of each transport coefficient profile is then to be inferred at two points
r/a = t and r/a = ac/a. It is clear that the exact same profile for D results for any
0 < tD < ac/a as long as D(tD) = D(ac/a). Likewise, the exact same profile for V

15. For the piecewise linear profiles used here and in the previous work, specifying the spline coefficients
is accomplished by specifying the value at each knot.
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Figure 3.34: Posterior distribution for D and V inferred from line-integrated
measurements representing the diagnostic situation on Alcator C-Mod. The
figure is drawn as in figure 3.31. The posterior mean is shown as
the blue line and the true value is shown as the green line. This fig-
ure was produced using settings_1101014006_14_basic_line_integ.py and
post_process_basic_line_integral_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_14_basic_line_integ.py
https://github.com/markchil/thesiscode/blob/master/post_process_basic_line_integral_MCMC.py
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Figure 3.35: Posterior distribution for D and V inferred from line-integrated mea-
surements which only have data from the decay portion. The posterior mean is
shown as the blue line and the true value is shown as the green line. This figure was
produced using settings_1101014006_15_basic_line_integ_no_rise.py and
post_process_basic_line_integral_no_rise_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_15_basic_line_integ_no_rise.py
https://github.com/markchil/thesiscode/blob/master/post_process_basic_line_integral_no_rise_MCMC.py
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results for any 0 < tV < ac/a as long asV(tV ) moves up and down so as to form a line
with no break in slope. Therefore, a free knot spline such as this is non-identifiable:
no set of observations can uniquely determine values for tD, D(tD), tV and V(tV ).

To illustrate this, the inference was performed using the profiles shown in fig-
ure 3.1 and five local measurements. Performing the inference required 500 active
points and was rather computationally expensive. The results are shown in fig-
ure 3.36. As expected, there are large regions of the posterior distribution with
constant posterior density indicating that this combination of parameters is not
identifiable. It would be expected that the marginal posterior distributions for D1,
V1, tD and tV should be uniform. But there is a large number of points with tv ≈ ac/a,
V1 ≈ V2. This is either an artifact of MultiNest failing to adequately sample such
a non-identifiable posterior distribution or a result of the simulated diagnostic noise
causing the fit to infer some extra structure/uncertainty in the edge. This is illus-
trated by figure 3.37 which shows the marginalizedD andV profiles for this case: the
uncertainty envelope on V spreads out considerably at the edge. In either case, the
implication of this analysis is clear: avoiding free-knot splines (or putting a strong
prior distribution on the knot locations) is necessary for the inference problem to
be tractable.

3.6.5 The uncertainty attributable to ne and Te is minimal

3.6.5.1 Demonstration with synthetic data

In order to demonstrate the ability to marginalize over the ne and Te profiles using
mcmc, the inference for the line-integrated data (including the rise) was repeated
with the temperature and density profiles allowed to vary. The truncated eigende-
composition described in section 3.5.3.2 was used. Informed by figure 3.30, the first
three eigenvalues for each profile were retained. The number of active points was
increased to 200 to get a better picture of the posterior distribution. The posterior
distribution is shown in figure 3.38, the marginalized D and V profiles are shown in
figure 3.39 and summary statistics are given in the fourth block (labelled “Free ne,
Te”) in table 3.2. The posterior ne and Te profiles are shown in figure 3.40.

As shown in the figures and the table, the effect of ne and Te on the posterior
uncertainty in D and V is small. To further bolster this claim, the posterior correla-
tion matrix of the parameters is shown in figure 3.41. There is, in general, somewhat
weak correlation between the weights for the ne and Te profiles and D and V , with
the strongest correlation (ρ = −0.69) being between V and une,3 and the second
highest (ρ = 0.58) between D and une,3. Note, however, that the correlation between
D and V is very high compared to this (ρ = −0.98).
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Figure 3.36: Example of non-identifiable posterior distribution resulting from the
use of a free-knot spline. The parameters areD1 = D(tD),D2 = D(ac/a),V1 = V(tV ),
V2 = V(ac/a) plus the knot locations tD and tV . The posterior mean is shown as
the blue points and the true value is shown as the green points. The posterior
distribution exhibits the classic symptoms of non-identifiable parameters: there
are large areas of the posterior distribution with constant posterior density. This
figure was produced using settings_1101014006_18_free_knots_local.py and
post_process_free_knots_local_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_18_free_knots_local.py
https://github.com/markchil/thesiscode/blob/master/post_process_free_knots_local_MCMC.py
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Figure 3.37: Marginalized D and V profiles for the case with one free inter-
nal knot and local measurements. As shown in figure 3.36, the posterior distri-
bution for the convective velocity profile’s knot tV is peaked around r/a = 1
which allowed extra flexibility and hence uncertainty there, consistent with the
presumed lack of knowledge about the outer region of the plasma. This fig-
ure was produced using settings_1101014006_18_free_knots_local.py and
post_process_free_knots_local_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_18_free_knots_local.py
https://github.com/markchil/thesiscode/blob/master/post_process_free_knots_local_MCMC.py
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Figure 3.38: Posterior distribution for D, V , ne, Te inferred from line-
integrated spectroscopic measurements. The posterior mean is shown as the
blue points and the true value is shown as the green points. The effect of
ne and Te on the posterior uncertainty in D and V is minimal. This fig-
ure was produced using settings_1101014006_16_ne3_Te3_line_integ.py and
post_process_ne3_Te3_line_integ_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_16_ne3_Te3_line_integ.py
https://github.com/markchil/thesiscode/blob/master/post_process_ne3_Te3_line_integ_MCMC.py
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Figure 3.39: Posterior D and V profiles inferred from line-integrated
spectroscopic measurements and marginalized over ne and Te. The ef-
fect of ne and Te on the marginalized profiles is minimal. This figure
was produced using settings_1101014006_16_ne3_Te3_line_integ.py and
post_process_ne3_Te3_line_integ_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_16_ne3_Te3_line_integ.py
https://github.com/markchil/thesiscode/blob/master/post_process_ne3_Te3_line_integ_MCMC.py
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Figure 3.40: Prior (blue solid) and posterior (green dashed) ne and Te profiles.
The posterior profiles are very slightly different from the prior profiles: the mean
values are essentially the same, but the uncertainty envelopes are much smaller.
This figure was produced using settings_1101014006_16_ne3_Te3_line_integ
.py and post_process_ne3_Te3_line_integ_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_16_ne3_Te3_line_integ.py
https://github.com/markchil/thesiscode/blob/master/settings_1101014006_16_ne3_Te3_line_integ.py
https://github.com/markchil/thesiscode/blob/master/post_process_ne3_Te3_line_integ_MCMC.py
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Figure 3.41: Posterior correlation matrix for the inference with line-integrated
spectroscopic measurements and ne and Te free to vary. The correlation be-
tween D and V is very strongly negative, but the correlation of D and V with
any of the weights for the ne and Te profiles is comparatively low. This fig-
ure was produced using settings_1101014006_16_ne3_Te3_line_integ.py and
post_process_ne3_Te3_line_integ_MCMC.py.

The weighted eigenvectors (i.e., the basis functions that the weights u multiply)
are shown in figure 3.42. The red dashed curve in the top plot corresponds to une,3
and hence is the one which was observed to have the biggest effect on D and V . The
effect of increasing une,3 is primarily to lower the core electron density. The ionization
and recombination rate coefficients are very weak functions of ne so any change in
ne will preserve the ratio of ionization to recombination, with the total source/sink
term QZ,i going linearly with ne. Likewise, the photon emissivity εph = nenZ,iPij
is linear in ne. As shown in figure c.2, the source/sink term QZ,i is negative in the
core for these parameters, so decreasing the core electron density will make this
source/sink term less negative. Therefore, the effect of increasing une,3 is to create
two competing effects on the diagnostic signals: the photon emissivity for a given
impurity density goes down, but the impurity density can reach a slightly higher
level because of the reduced particle sink. The loss of photon emissivity appears to

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_16_ne3_Te3_line_integ.py
https://github.com/markchil/thesiscode/blob/master/post_process_ne3_Te3_line_integ_MCMC.py
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Figure 3.42: First three weighted eigenvectors for ne and Te. This figure
was produced using settings_1101014006_16_ne3_Te3_line_integ.py and
post_process_ne3_Te3_line_integ_MCMC.py.

be the dominant effect given that, as une,3 increases, the diffusion increases and the
convection gets more strongly inwards to restore the impurity density and hence the
core photon emissivity to the levels given in the synthetic data.

The hypothesis that the correlations between ne, Te and D, V are primarily
the result of changes in the photon emissivity was verified by running the same
test with synthetic data consisting of 32 local measurements of the He-like density.
Because the charge state density is used directly the photon emission rate does not
enter this calculation. The posterior correlation matrix from this case is shown in
figure 3.43. The strong negative correlation between D and V is preserved, but now

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_16_ne3_Te3_line_integ.py
https://github.com/markchil/thesiscode/blob/master/post_process_ne3_Te3_line_integ_MCMC.py
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Figure 3.43: Posterior correlation matrix for the inference with ne and Te
free to vary and local charge state density measurements. The correlation
between D and V remains very strongly negative, but the correlation of D
and V with any of the weights for the ne and Te profiles is negligible. This
figure was produced using settings_1101014006_25_ne3_Te3_local.py and
post_process_ne3_Te3_MCMC.py.

only uTe,3 has a non-negligible correlation withD andV , but with much lower values
of corr[D, uTe,3] = −0.28 and corr[V , uTe,3] = 0.51. This appears to be a result of
the sensitivity of the ionization and recombination coefficients to Te: decreasing the
core Te changes the charge state distribution, thus requiring slightly less diffusion
and slightly less inwards convection to match the observed signals.

The lack of sensitivity ofD and V to ne and Te is surprising, especially given that
the previous work on Alcator C-Mod ascribed all of the uncertainty in D and V to
the effects of ne and Te. The charge state distributions and emissivity profiles for
strahl runs with ne and Te sent to the extremes of their error bars, however, showed
very little change, thus confirming that this is not simply an artifact of the profiles for
D and V being too stiff to accommodate the changes in ne and Te. This conclusion
is further bolstered by figure 3.44 which shows the recombination, ionization and
photon emission rate coefficients averaged over the uncertainties in ne and Te. These

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_25_ne3_Te3_local.py
https://github.com/markchil/thesiscode/blob/master/post_process_ne3_Te3_MCMC.py
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Figure 3.44: Recombination, ionization and photon emission (for the 0.32 nm He-
like calcium line) rate coefficients with uncertainty envelopes consistent with the
prior uncertainty in ne and Te. The ±1σ and ±3σ uncertainty envelopes shown
were computed by drawing samples from the prior distribution fne,Te|𝒫(ne,Te|𝒫)
and evaluating the rate coefficients at these values. For the recombination and
ionization rates the uncertainty envelopes are comparable to the width of the line.
Note that these are not proper uncertainty estimates for the rate coefficients: no
attempt has been made to include the uncertainties in the atomic physics modeling
used to obtain these quantities. This figure was produced using make_rate_plots
.py.

https://github.com/markchil/thesiscode/blob/master/make_rate_plots.py
https://github.com/markchil/thesiscode/blob/master/make_rate_plots.py


3.6. Application to synthetic data 209

rate coefficients are the only way that ne andTe enter the impurity transport equation:
the background profiles only act to determine the ionization balance (and hence the
source/sink terms) and the spectral emission seen by the diagnostics. The spread in
the rate coefficients (in particular the ionization and recombination rates) over the
prior uncertainty in ne and Te is very small: therefore, it is entirely expected that the
ne and Te uncertainties should have little impact on the posterior uncertainty in D
and V .

3.6.5.2 Explaining the previous result

In order to explain the presumed sensitivity of the previous result to ne and Te, the
results from section 2.6were re-examined. The dataset used for the following analysis
consists of all of the samples from the map and mcmc cases. The spline samples were
not used because that case had a substantially different Te profile. The correlations of
the localD andV values with the local ne and Te values are shown in figure 3.45. The
correlations are, in general, very low, with the peak correlation being a small region
of the V profile having ρ = −0.53. Specifically, to quantify this, the significance test
for moderate numbers of samples which are assumed to be approximately bivariate
normal given in [302] was used. Plots of the correlations masked to p ≤ 0.05
(i.e., less than 5% probability of seeing a correlation this big by chance from an
uncorrelated distribution) are given in figure 3.45(b). Scatterplots of the data with
the highest correlations from each pair of variables are given in figure 3.46. The
highest correlation observed is between V and Te, and can potentially be ascribed to
outliers given that most of the data occupy an uncorrelated cluster. The scatterplots
confirm the lack of correlation between the transport coefficients and the background
profiles during the Monte Carlo sampling.

The only other thing which changed during the Monte Carlo sampling was the
knot locations. The correlations of the local D and V values with the knot locations
are given in figure 3.47. Both of these quantities show very clear, statistically signif-
icant correlations with the knot location, in particular with the outermost knot. This
is confirmed by the scatterplots of the data with the highest correlations given in
figure 3.48. This indicates that the uncertainty inD and V seen before can be almost
entirely attributed to the variation in knot location and not to the sensitivity to ne
and Te. This has two key implications:

1. Because there is so much sensitivity to the knot locations, the existing basis
functions when used with five coefficients per profile and fixed knots appear
to be too inflexible to adequately describe the experimental data. Instead, it is
necessary either to use free knots (and hence have to deal with the potential
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Figure 3.45: Correlations between the local D(r/a) and V(r/a) values and the local
ne(r/a) and Te(r/a) values. (b) shows only the statistically significant (p ≤ 0.05)
correlations. The mean knot positions are shown as the green dotted lines. These
figures were produced using process_old_result.py.

https://github.com/markchil/thesiscode/blob/master/process_old_result.py
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Figure 3.46: Scatterplots of D, V versus ne, Te for the pairs of points with the
highest correlations. The slightly negative ne values in the plot on the lower left are
a numerical effect relating to the very small density at r/a = 1.15, well outside of
the lcfs. This figure was produced using process_old_result.py.

https://github.com/markchil/thesiscode/blob/master/process_old_result.py
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Figure 3.47: Correlation of D (top) and V (bottom) with the knot positions for the
four internal knots. The horizontal green dotted lines give the mean knot locations.
The plots on the right aremasked to show only the statistically significant (p ≤ 0.05)
correlations. This figure was produced using process_old_result.py.

issues illustrated in section 3.6.4) or use many more coefficients to obtain a
comparable level of flexibility without such pathologies.

2. Considerable computational effort can be saved by neglecting the effects of ne
and Te on the inferred D and V profiles with minimal effect on the results.

3.6.6 The model evidence allows rigorous selection of the model
complexity

The previous section points to the need to consider more complicated models: either
including free knots as free parameters, or includingmanymore coefficients to obtain
a comparable level of flexibility in the basis functions describing the transport coef-
ficient profiles. This then raises the question of what level of complexity is justified
given the data on hand. As was noted in section 3.5.4.3, the use of MultiNest to
characterize the posterior distribution has the key advantage of providing an estimate
of the model evidence fs|ℳ(s|ℳ). This quantity is the probability of observing data
s given model ℳ, averaged over all values of the parameters θ. Here, ℳ refers to

https://github.com/markchil/thesiscode/blob/master/process_old_result.py
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Figure 3.48: Scatterplot of D (top) and V (bottom) versus knot location for the
pairs of points with the highest correlations. The break in slope occurs because D
must be greater than 0. This figure was produced using process_old_result.py.

the choice a specific number of coefficients and configuration of knots (fixed or free)
to describe the transport coefficient profiles. Mathematically, the evidence is the
likelihood fs|θ,ℳ(s|θ, ℳ) marginalized over all values of the parameters permitted
by the prior distribution fθ|ℳ(θ|ℳ):

fs|ℳ(s|ℳ) = ∫ fs|θ,ℳ(s|θ, ℳ)fθ|ℳ(θ|ℳ) dθ. (3.78)

For this reason, the evidence is sometimes also referred to as the marginal likelihood.
This quantity gives an objective way of comparing models, and allows the model
with the appropriate level of complexity given the data to be selected.

To see how this works, figure 3.49 gives a basic demonstration, based on figure 5.6

https://github.com/markchil/thesiscode/blob/master/process_old_result.py
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Figure 3.49: Demonstration of model selection using the model evidence. The
plot shows the evidence f𝒟|ℳ(𝒟|ℳ) for three models of varying complexity as a
function of a single observation 𝒟, where the value actually observed is shown by
the black dotted line. The simple model (blue solid curve) can only explain data in
a small range, so it has very high evidence for that narrow range, but small evidence
for other observations. The complex model (red dot-dash curve) can explain many
possible observations, so it necessarily has low evidence over the whole domain.
The model with moderate complexity (green dashed curve) can explain a moderate
number of possible observations in a region encompassing the observed data, and
so has the highest evidence for the observation shown. This figure is based on figure
5.6 of [304]. The figure was produced using make_ml_demo.py.

of [304]. For a more concrete example, consider selecting what order of polynomial
to fit some data with. Six synthetic data points were generated from the cubic
polynomial y = x3 + 2x2 − 5x + 1, with homoscedastic noise σy = 5. The results
of fitting polynomials of order d = 1 through d = 5 are shown in figure 3.50. It
is obvious that the linear fit (green dashed line) is not a good description of the
data, and one might also guess that the quintic fit (yellow dashed line) is overfitting
because of its zero residual and strange behavior at the edges of the fit. But, it is not
obvious from inspecting the fits and residuals where between these two extremes
the “best” model is. Figure 3.51 shows an estimate of the log-evidence as a function
of polynomial degree. This correctly shows that the cubic polynomial has the right
level of complexity given the data – it is neither too simple (and hence misses real
structure) nor is it too complex (and hence infers structure which is not there).

In order to demonstrate the applicability of the evidence to model selection for

https://github.com/markchil/thesiscode/blob/master/make_ml_demo.py
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Figure 3.50: Synthetic data (green points), true curve (thick solid blue line) and
polynomial fits of various degrees. The upper plot shows the data and the fits, the
lower plots shows the residuals. As expected, the quintic (d = 5) polynomial can fit
the six data points with zero residual. In order to show the structure for the more
reasonable fits, the plot range was set to cut off the very large residuals from the
linear fit. This figure was produced using model_selection_demo.py.

the impurity transport problem, a synthetic dataset consisting of 32 local measure-
ments of the He-like calcium density with a time resolution of 6ms and a noise level
of 5% was used. This is roughly equivalent to the situation on Alcator C-Mod, but
using the local measurements is a little more computationally efficient. The basic D
and V profiles from equation (3.14) were used to generate the data. MultiNest was
run for cases with one, two, three and four free coefficients for each of the transport
coefficient profiles. In all cases the knots were fixed at positions linearly spaced be-
tween r/a = 0 and r/a = ac/a. In order to obtain accurate estimates of the evidence,

https://github.com/markchil/thesiscode/blob/master/model_selection_demo.py
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Figure 3.51: Estimated log-evidence as a function of polynomial degree d. The log-
evidence was estimated using equation (3.79). This procedure correctly picks d = 3
as the best model. This figure was produced using model_selection_demo.py.

400 active points were used and the sampling efficiency was set to 0.3. The evidence
is given as a function of the number of coefficients in figure 3.52 and the various
posterior profiles forD and V are given in figure 3.53. The evidence is highest for the
simplest case, which is the model which generated the data. Furthermore, past the
optimal case the log-evidence follows a linear trend in the number of free parameters.
This is consistent with behavior of the Bayesian information criterion (bic) [304,
458]:

bic(ℳ) = ln fs| ̂θml,ℳ(s| ̂θml, ℳ) − d
2

lnN ≈ ln fs|ℳ(s|ℳ), (3.79)

where d is the number of parameters and N is the number of observations. Once

https://github.com/markchil/thesiscode/blob/master/model_selection_demo.py
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Figure 3.52: Evidence as a function of model complexity for the basic synthetic
data. The horizontal axis gives the number of free coefficients for each trans-
port coefficient profile (both D and V were taken to have the same number of
coefficients). The synthetic data were generated by a model with only one co-
efficient per profile, which is correctly identified as the best model. This figure
was produced using settings_1101014006_24_model_selection_local.py and
plot_model_selection_evidence_trend_local.py.

a model is complex enough to describe the data well, the improvement to the log-
likelihood term is negligible and the termwhich is linear in the number of parameters
takes over. This both verifies that the log-evidence computed by MultiNest has the
correct behavior and confirms that the bic is an appropriate approximation to the
log-evidence for comparing models when a reliable maximum likelihood estimate
is available.

Note that as an alternative to model selection using the evidence, techniques
such as reversible-jump mcmc can be used to marginalize over discrete parameters
like the number of coefficients, as was done for smoothing splines in [459]. This
process is very computationally expensive, however, so it was not attempted here.

3.6.7 Testing parameter estimation and model selection on more
complicated synthetic data

The previous sections have demonstrated the ability of the MultiNest-based ap-
proach to reconstruct the very simple D and V profiles given by equation (3.14).
There is no reason to expect that real experimental transport coefficient profiles will

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_24_model_selection_local.py
https://github.com/markchil/thesiscode/blob/master/plot_model_selection_evidence_trend_local.py
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Figure 3.53: Posterior D and V profiles for the four different levels of com-
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terior mean is similar to the true profile, but the higher complexity cases
permit more flexibility and hence have higher uncertainties. This figure
was produced using settings_1101014006_24_model_selection_local.py and
post_process_model_selection_MCMC_local.py.

be so well-behaved, however. In order to verify the ability of this approach (and
the diagnostic arrangement on Alcator C-Mod) to reconstruct more complicated
profiles, synthetic data were constructed using the mean profile from the previous
work as presented in section 2.6. To represent the diagnostic situation on Alcator
C-Mod, the same line-integrated synthetic diagnostics as in section 3.6.2 were used.
To help speed up convergence, a prior distribution which was designed to keep D

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_24_model_selection_local.py
https://github.com/markchil/thesiscode/blob/master/post_process_model_selection_MCMC_local.py
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and V on the correct order of magnitude was used:

fD,V (D,V) = 𝒰 (D; 0m2/s, 15m2/s)𝒰 (V ; −60m/s, 20m/s), (3.80)

where in this notation D refers to all of the coefficients of the diffusion coefficient
profile and V refers to all of the coefficients of the convective velocity profile. As in
the previous section, 400 active points were used and the sampling efficiency was
set to 0.3. Importance nested sampling was used to attempt to get a more accurate
estimate of the evidence.

The evidence as a function of model complexity is given in figure 3.54 and the cor-
responding profiles are given in figure 3.55. With up to seven coefficients per profile
the evidence has still not shown a clear rollover. Curiously, the importance nested
sampling estimate shows a slight decrease in the evidence for the seven coefficient
case, but the conventional nested sampling estimate shows the curve as continuing
to increase. Unfortunately it was not possible to evaluate the evidence for more com-
plicated models: as figure 3.56 shows, this problem is very much subject to the curse
of dimensionality. The number of forward model evaluations needed for Multi-
Nest to converge increases exponentially with the number of free parameters. The
forward model takes a little more than one cpu-second per evaluation, so the seven
coefficient case took approximately 7000 cpu-hours to converge. Extrapolating this
trend, the eight coefficient case is expected to take about 15 000 cpu-hours and the
nine coefficient case 53 000 cpu-hours. The total time to test all cases from one to
ten coefficients is expected to be about 260 000 cpu-hours. The actual time may
be worse, as at some point the number of active points will need to be increased to
ensure adequate coverage of the posterior distribution is obtained. For comparison,
a single nonlinear, ion-scale gyro run takes about 10 000 cpu-hours, but is run on
many processors.16 Therefore, to make it practical to apply the MultiNest-based
approach to real data, the next step is to do extensive development work to eliminate
bottlenecks between strahl and the rest of the forward model and to deploy the
analysis on more powerful, massively-parallel computers than what was used for the
present work. For reference, to analyze the seven coefficient model took a total of
about 15 wall-clock days on a workstation which supports 24 threads. Optimistically
assuming that the problem scales linearly with the number of processors, this would
be reduced to two wall-clock days on 200 processors and four wall-clock hours on
2000 processors.

That being said, it is still possible to get some insight from the runs which
were obtained. From figure 3.55, it is clear that the simple D and V profiles of

16. It often takes a total of about 2 × 106 to 3 × 106 cpu-hours to simulate a given shot with gyro, including
setting up the baseline run, doing resolution checks and performing sensitivity scans [460].
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Figure 3.54: Evidence as a function of model complexity for the synthetic data using
complicatedD and V profiles. The upper plot shows all of the cases which were run
while the lower plot has been zoomed in to show the more reasonable cases with
four or more coefficients per profile. Also shown are the evidence values for the five
coefficient case with good (green triangle) and bad (red circle) knot locations. In
the legend, “ins” refers to importance nested sampling and “ns” refers to nested
sampling. The ins estimates tend to lie below the ns estimates, and in fact reach
opposite conclusions about the relative suitability of the six and seven coefficient
cases. This figure was produced using settings_1101014006_22_NTH_as_true.py
and plot_NTH_as_true_evidence_trend.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/plot_NTH_as_true_evidence_trend.py
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Figure 3.55: Posterior D and V profiles for various levels of complexity.
Only the ±1σ uncertainty envelopes are shown. The dashed blue curve cor-
responding to the seven coefficient per profile case is the only case shown
which fully encompasses the true solution in its uncertainty envelope. This
figure was produced using settings_1101014006_22_NTH_as_true.py and
post_process_NTH_as_true_MCMC.py.

equation (3.14) do a terrible job of matching the true profiles and have very small
uncertainties as a result of how inflexible they are. This case is relevant because
simple profiles like this were widely used in the older impurity transport literature.
On their own, the parameter estimates for D and V in this case provide no direct
indication that the model is a poor description of reality: the qualitative features of a
fast rise followed by a slow decay are present in the simulated diagnostic signals, and
the large residuals could naively be attributed to a mis-estimation of the diagnostic
uncertainties. In fact, as shown in figure 3.57, the diagnostic signals are reproduced

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py
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Figure 3.56: Number of forward model evaluations for MultiNest to con-
verge as a function of model complexity. Note the logarithmic scale: this
shows the exponential growth characteristic of the curse of dimensionality. Note
that on the computer used for this study a single forward model evaluation
takes approximately one cpu-second: doing model selection properly requires
tens to hundreds of thousands of cpu-hours. This figure was produced using
settings_1101014006_22_NTH_as_true.py and make_calls_plot.py.

reasonably well even for the two coefficient per profile case. This highlights the
critical importance of model selection: even simple profiles which bear absolutely
no resemblance to the true profiles can reproduce the experimental observations
to an extent that “looks good.” But, as figure 3.54 makes clear, the model evidence
soundly rejects the models with fewer than five coefficients per profile.

Note that, until there are at least seven coefficients per profile, the uncertainty
envelopes still do not overlap with the major features of the true profiles. One
intriguing aspect is that the five coefficient model qualitatively resembles the true
profiles more strongly than the six coefficient model. This is particularly relevant as
the previous work which generated the truth data used five coefficients per profile.
This appears to be a result of the knot positions: when using linearly-spaced knots,
models with an odd number of knots have a knot right near the large peak in the
true profiles, whereas models with an even number of knots have a knot to either
side of the peak. This means that odd-knot cases like the five and seven coefficient
models are better able to match the features of the true profiles.

To explore the effect of the knot positions further, two additional five coefficient

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/make_calls_plot.py
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Figure 3.57: Synthetic data and predicted diagnostic signals for varying levels of
complexity. The upper plot is from a hirex-sr chord viewing the core of the plasma,
the lower plot is from the outermost chord. These signals were evaluated using the
posterior mean D, V profiles for each case. When there are at least two coefficients
per profile, the data appear to be reproduced quite well. But figure 3.54 clearly shows
that the data are more likely under the more complicated models, and figure 3.55
confirms that the more complicated models do in fact match the true profiles better.
This figure was produced using settings_1101014006_22_NTH_as_true.py and
post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py
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models were evaluated: one with knots at the mean knot locations from the previous
work, and one with the knots purposefully placed in bad locations. The profiles
are shown in figure 3.58 and the corresponding evidence values are shown as the
green triangle and red square in figure 3.54. The near-optimal knots yield profiles
which match the true profiles well and the evidence value is correspondingly higher.
The purposefully bad knots, however, yield a very bad match to the true profiles
and a dramatically lower evidence value. Note that the bad knots case is somewhat
questionable as the outermost coefficient of the V profile ended up being very close
to the edge of the prior distribution, which may have caused the sampling to be
unreliable. Independent of that detail, this test would seem to imply that some
benefits may be claimed by using free knots. Unfortunately, when this was tried,
the number of forward model evaluations needed to converge was found to be
much worse than for the fixed-knot case. The effect of the knot positions should be
much smaller in the more flexible models with more coefficients per profile, so the
appropriate course of action seems to be to use many coefficients with fixed, linearly-
spaced knots in order to avoid the issues (and associated convergence slowdown)
discussed in section 3.6.4.

A final interesting result from the seven coefficient case is shown in figure 3.59,
which shows the posterior distribution for the coefficients of the D and V profiles.
The mode has a curved shape in a number of the bivariate marginal distributions
and many of the univariate marginal distributions are asymmetric: the posterior
distribution is very much non-Gaussian. This is a very important result, as the
common approach of finding the map or ml estimate using a local optimizer then
estimating the parameter uncertainties using the inverse Hessian matrix assumes
that the posterior distribution is Gaussian. That approach would yield an inaccurate
uncertainty estimate when applied to this case. Curiously, the simpler cases do
not exhibit such strongly non-Gaussian behavior except where D is close to zero.
(Posterior distributions for the other cases are given in figure c.6 through figure c.13.)
It is believed that this is a result of the seven coefficient per profile case being the
first one to have sufficient flexibility for the sampling procedure to be able to explore
the nonlinear interplay between convection and diffusion when determining the
line-integrated diagnostic signals. This behavior may also be partly an effect of the
distribution forV4 (the negative peak of theV profile) being close to the lower bound
of the prior distribution, which may have created issues with MultiNest’s sampling.
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Figure 3.58: Posterior D and V profiles with various fixed knot locations for
the five coefficient per profile case. Only the ±1σ uncertainty envelopes are
shown. The colors of the thin curves were chosen to match figure 3.54. Note
that the original curves are a mixture of five coefficient profiles with perturbed
knot locations. Linearly-spaced knots (thin blue dashed line) do a reason-
able job of matching the general features of the true profiles (thick blue solid
line). Using the mean knot locations from the previous analysis (dot-dash green
line) gives a much better fit, with the true curves lying almost entirely inside
the uncertainty envelopes. Using knots which were selected to lie far from
the optimal locations (red dotted line) produces a very poor fit to the data.
This figure was produced using settings_1101014006_22_NTH_as_true.py and
post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py
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Figure 3.59: Posterior distribution for D and V for the seven coefficient per profile
case. Note the curved shape of some of the bivariate marginal distributions such as
betweenV5 andV4 as well as the asymmetric shape of the univariate marginal distri-
butions such as the one forD5: the posterior distribution is verymuch non-Gaussian.
This figure was produced using settings_1101014006_22_NTH_as_true.py and
post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py


3.7. Summary, conclusions and next steps 227

3.7 Summary, conclusions and next steps

This chapter has illustrated the difficulties endemic to the inference of experimental
impurity transport coefficient profiles. The general features of the impurity trans-
port equation were explored with the help of the strahl code and a linearized
Bayesian model was constructed to help estimate diagnostic requirements for im-
purity transport measurements. This model led to the interesting conclusion that
spatial resolution appears to be more important than temporal resolution for typical
x-ray spectrometer sampling rates and noise levels: from the impurity transport
perspective, it is a better investment to add more lines of sight than to develop faster
detectors.

A fully Bayesian framework for inferring transport coefficient profiles was then
developed in order to provide rigorous accounting of the uncertainty in the solution.
Use of the MultiNest algorithm allows a complete accounting of uncertainty, even
in the presence of potentially multimodal or otherwise non-Gaussian posterior
distributions. Furthermore, MultiNest computes the model evidence, an objective
metric for selecting the appropriate level of complexity in the inferred D and V
profiles.

Several synthetic datasets were used to illustrate the utility of the fully Bayesian
approach and verify the predictions of the linearized Bayesian analysis. This analysis
led to the very surprising result that the uncertainties in the background ne and Te
profiles do not affect the result very much. Instead, the uncertainties which were
attributed to ne and Te in the previous work on Alcator C-Mod can be explained
by the shifting of knot positions between code runs. This indicates that the basis
functions used in the previous work were not flexible enough, and underscores the
need for proper model selection. Application of the new impurity transport analysis
methodology to synthetic data based on the previous Alcator C-Mod results shows
the promise of the new methodology, but completing the analysis and revisiting
existing experimental data was not computationally tractable.

In light of the difficulties encountered when measuring impurity transport co-
efficients for this thesis, and the fact that many of the pathologies only became
clear upon very close examination of the situation, any study which attempts to
measure impurity transport coefficients using the forward model approach must be
considered suspect unless it addresses all of the following questions:

1. How is parameter estimation performed? Specifically:

(a) If using a derivative-based optimizer such as Levenberg-Marquardt or
bfgs, how were the derivatives computed? If finite differences are used
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to compute the derivatives for a derivative-based optimizer, was the
step size sufficient to avoid roundoff error? It was found in the present
work that finite differences require a prohibitively large step size. This
affects both the search direction of the optimizer and the quality of the
inverse Hessian matrix used to estimate parameter uncertainties in this
approach.

(b) Howwas the possibility of multiple modes and/or plateaus in the parame-
ter space handled? It was found in the present work that local optimizers
started at various points distributed throughout the parameter space
would often either get stuck in regions of the parameter space with poor
fit or would converge to various local optima.

2. How is model selection performed? It was found in the present work that
simple models can give seemingly reasonable agreement with the data while
having very little relationship to the true D and V profiles. Furthermore, the
inflexibility of overly simple models was found to lead to an underestimation
of the uncertainty in the answer.

3. Howwas the analysis procedure verified? It was found in the present work that
some of the issues observed do not occur in synthetic data produced using
very simple D and V profiles.

Given the issues associated with the measurement of impurity transport coefficients,
it would appear that they are not, in fact, the appropriate level of the primacy hier-
archy [34] to use for validation of gyrokinetic simulations of impurity transport. A
more trustworthy comparison can be obtained by using quantities which require far
less complicated post-processing of both the experimental data and the simulation,
as was done to compare measured and simulated boron density profiles in [21, 461,
462].

While the present work has demonstrated a framework which can deliver reliable
estimates of impurity transport coefficient profiles and their associated uncertainties,
there are still many avenues to build on the present work and improve it for use in
situations where a summary of impurity transport in terms of transport coefficient
profiles is desirable:

• Handling the full complexity of real data is not computationally tractable
with the present approach. The basic step to improve this is to eliminate the
bottlenecks between strahl and the rest of the forwardmodel and then deploy
the code on a massively-parallel computer. Beyond that, it may be possible to
replace MultiNest with some form of faster, approximate methodology such
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as a global optimizer for parameter estimation and bic for model selection.
This will require considerable work to select an appropriate optimizer given
the issues observed during the present work.

• The present approach did not consider the effects of sawteeth. To handle
multiple injections at different sawtooth phases will require multiple strahl
runs per forward model evaluation, so it is essential to get the analysis to be
computationally tractable before handling this problem.

• While the present framework is in principle capable of handling uncertainties
in the ionization, recombination and photon emission rate coefficients, uncer-
tainty estimates are not presently available. Some preliminary work on this
topic was published in [457], but more work is needed to fully characterize
the uncertainties in measurements of impurity transport.

• The present analysis ignored poloidal asymmetries, which are known to be
important for high-Z impurities. This will require development of a new
impurity transport code, as strahl is a 1d code.

• The present analysis assumed that the diagnostics were absolutely-calibrated,
including the measurement of the source function. Observations during the
present work as well as published results in [159, 160] suggest that the lack
of an absolute calibration can lead to a multimodal and/or non-identifiable
posterior distribution.

• The spectral model developed for the present work needs to be extended to in-
clude theH-like calciumBalmer series, proper handling of theHe-like calcium
forbidden line, satellite lines, recombination radiation and bremsstrahlung in
order to handle experimental data from the xtomo systems.



4
Conclusions and future directions

4.1 Contributions and conclusions

This thesis has made contributions to experimental plasma physics under two main
topics:

1. Analysis of profile data using nonstationary Gaussian process regression.

2. Inference of impurity transport coefficient profiles.

In both cases, the goal has been to improve the quality of experimental data analysis
in order to improve the ability to validate simulations of turbulent transport.

4.1.1 Profile data analysis

As shown in chapter 2, the use of Gaussian process regression helps to overcome
the major issues endemic to previous approaches for profile data smoothing by
providing a framework for statistically rigorous, automated profile fitting. The major
contributions of this thesis to profile fitting and Gaussian process regression are:

1. Development of general-purpose (gptools) and domain-specific (eqtools,
profiletools) open source software tools to fit profile data. gptools is
presently in use around the world in fields including plasma physics, astro-
physics, and biophysics and eqtools has been deployed at several American
and European tokamaks. (See appendix d, appendix e and appendix f.)

2. Testing of a wide variety of approaches to nonstationary Gaussian process
regression, including the novel I-spline input warping function and the tanh
covariance length scale function. (See section 2.4.3.2.)
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3. Demonstration of the importance of using a fully Bayesian (i.e., mcmc-based)
approach when evaluating gradient uncertainties. (See section 2.5.1.)

4. Demonstration of nonstationary Gaussian process regression combining local
and line-integrated measurements, including the ability to reconstruct the
core electron density without local measurements. (See section 2.3.9 and
section 2.5.2.)

5. Demonstration of the use of Gaussian process regression to compute second
derivative profiles with rigorous uncertainty estimates in order to test theo-
ries of momentum transport. Within the experimental uncertainties there is
little evidence that there is a strong change in second derivatives across the
density threshold where a toroidal rotation reversal is seen in L-mode. (See
section 2.5.3.)

6. Demonstration of Gaussian process regression to fit the space and time depen-
dence of sawtooth-free profile data. (See section 2.5.4.)

7. Demonstration of the combination of Gaussian process regression with a para-
metric (mtanh) mean function to fit H-mode pedestal data. This application
revealed that the parameters obtained from a Gaussian process with a para-
metric mean function can end up differing substantially from those obtained
from a purely parametric fit. (See section 2.5.5.)

8. Demonstration of the use of a truncated eigendecomposition of the Gaus-
sian process posterior distribution to efficiently propagate profile uncertainty
through an analysis code. This approach made it computationally tractable to
show that the uncertainties in ne and Te have little effect on the uncertainties
in D and V . (See section 3.6.5.)

9. Extensive calculations of the derivatives of stationary and nonstationary co-
variance kernels, including expressions for derivatives of arbitrary order of
multidimensional squared exponential, rational quadratic and Matérn covari-
ance kernels. (See appendix b.)

Widespread adoption of these techniques will increase the level of rigor with which
plasma data analysis and vvuq of simulation codes is conducted. These techniques
have already been applied to a basic analysis of experimental impurity transport
[305] and to the modeling of lower hybrid current drive [463]. The truncated eigen-
decomposition demonstrated in contribution 8 in particular has the potential to
dramatically speed up the propagation of profile uncertainties through both analysis
and simulation codes when conducting vvuq of turbulent transport simulations.
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4.1.2 Inference of impurity transport coefficient profiles

This thesis has led to a major reevaluation of the procedures used to infer impurity
transport coefficient profiles, calling much of the existing literature into question.
The major contributions of this thesis to the measurement of impurity transport are:

1. Demonstration ofmajor issues with existing approaches for inferring impurity
transport coefficients. (See chapter 3.)

2. Development of guidelines for assessing attempts at inferring impurity trans-
port coefficients. (See section 3.7.)

3. Development of a linearized model to efficiently estimate diagnostic require-
ments to infer impurity transport coefficients. Application of this model re-
vealed that spatial resolution is more important than time resolution, contrary
to the conventional intuition. (See section 3.4.)

4. Development of a fully Bayesian approach to inferring the posterior distribu-
tion of the impurity transport coefficient profiles. Application of the Multi-
Nest algorithm enables a complete accounting of uncertainty as well as rigor-
ous selection of the model complexity. (See section 3.5 and section 3.6.)

5. Demonstration of the critical importance of model selection in obtaining
correct estimates of impurity transport coefficient profiles, including:

(a) Demonstration that the inferred transport coefficient profiles are rela-
tively insensitive to the ne and Te profiles. In particular, the large amount
of uncertainty previously attributed to the uncertainties in the ne and Te
profiles is actually a result of the use of overly simple basis functions com-
bined with incomplete handling of the knot locations. (See section 3.6.5.)

(b) Demonstration that the inferred transport coefficient profiles do not
in any way resemble the true values until a sufficiently complex model
is used. This calls into question much of the early work which used a
constant value for D and a linear function for V , as well as more recent
work using rather simple basis functions. (See section 3.6.7.)

6. Development of bayesimp, an open source software tool to perform Bayesian
analysis of impurity transport data. (See appendix g.)

This work has shown that, despite having been investigated since the 1970s [74], the
measurement of impurity transport coefficients is still an open topic (though this
thesis has made considerable progress on solving it) and the validation of turbulent
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transport simulations against the impurity channel is still an open question. Future
validation work informed by the present work is sure to yield further insight into the
behavior of impurities in magnetically confined plasmas and the ability of turbulent
transport simulations to describe reality.

4.2 Future directions

4.2.1 Profile data analysis

The software for Gaussian process regression developed as part of this thesis work
has reached a high state of development and is being used for routine data analysis.
That being said, further improvements to speed up the analysis could be made, such
as a generalization of the fast approximate methods described in [297] to handle
derivatives and nonstationary Gaussian processes. This combined with more ef-
ficient selection of quadrature points would make routine inclusion of tci data in
profile fits more practical. Given that the majority of the time to fit a profile with gpr
is spent optimizing or sampling the hyperparameters, there is considerable room for
improvement through selection of more efficient optimizers and samplers and/or
the development of fast techniques to approximate the hyperparameters. The logical
next step to improve the quality of profile data analysis is to incorporate the new
techniques for nonstationary gpr developed for this thesis into an integrated data
analysis such as was described in section 2.3.10.

4.2.2 Impurity transport

As was discussed in section 3.7, this thesis has demonstrated that the new system for
inferring impurity transport coefficients works on synthetic data, but more work is
needed before it is practical to apply it to real experimental data. To make the new
analysis practical requires considerable development to eliminate the bottlenecks be-
tween strahl and the rest of the forward model and to deploy the analysis code on a
massively-parallel computer. Equipped with a more efficient analysis code, it would
then be possible to properly handle sawteeth, account for atomic physics uncertain-
ties and incorporate data from broadband sxr diagnostics. A key shortcoming of
the present analysis is that the strahl code is 1d so it is necessary to ignore poloidal
asymmetries. Fixing this will require the use of a 2d impurity transport code. With
these improvements in place it would then be possible to revisit the validation of
transport simulations using the impurity channel. That being said, given the issues
inherent to inferring impurity transport coefficients, it is probably more useful to
develop validation metrics which use data from lower on the primacy hierarchy.
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a
Supporting material from
chapter 2: Profile fitting with
Gaussian process regression
This chapter contains figures and tables from the analysis presented in chapter 2
which were considered to distract from the main discussion, but which are included
here for completeness.

a.1 Material from section 2.4.3.2: Nonstationary
covariance kernels applied to entire profiles

This section contains the following material:

• Figure a.1 shows a plot of the synthetic data fit using the Gibbs covariance
kernel with a covariance length scale function which is an exponential of a
single Gaussian basis function.

• Figure a.2 shows a plot of the synthetic data fit using the Gibbs covariance
kernel with a covariance length scale function which is an exponential of four
Gaussian basis functions.

• Figure a.3 shows a plot of the synthetic data fit using the se covariance kernel
with beta-cdf input warping function.

• Figure a.4 shows a plot of the synthetic data fit using the se covariance kernel
with 2-knot I-spline input warping function.
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• Figure a.5 shows the marginal posterior distributions for the hyperparame-
ters of the fit to synthetic data using the Gibbs covariance kernel with tanh
covariance length scale function.

• Figure a.6 shows the marginal posterior distributions for the hyperparameters
of the fit to synthetic data using the Gibbs covariance kernel with covariance
length scale function which is an exponential of a single Gaussian basis func-
tion.

• Figure a.7 shows the marginal posterior distributions for the hyperparameters
of the fit to synthetic data using the Gibbs covariance kernel with covariance
length scale function which is an exponential of a sum of four Gaussian basis
functions.

• Figure a.8 shows the marginal posterior distributions for the hyperparameters
of the fit to synthetic data using the se covariance kernel with beta-cdf input
warping function.

• Figure a.9 shows the marginal posterior distributions for the hyperparameters
of the fit to synthetic data using the se covariance kernel with 2-knot I-spline
input warping function.

• Figure a.10 shows themarginal posterior distributions for the hyperparameters
of the fit to synthetic data using the se covariance kernel with 3-knot I-spline
input warping function.

• Table a.1 gives the summary statistics of the posterior distributions for the
hyperparameters of the various non-stationary fits to synthetic data.
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Figure a.1: Synthetic data and fits performed using the Gibbs covariance ker-
nel with a covariance length scale function which is an exponential of a single
Gaussian basis function, presented as in figure 2.16. The gradient in the core
has some extra structure relative to the Gibbs + tanh case and the map estimate
has converged to a rather unphysical mode. This figure was produced using
synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure a.2: Synthetic data and fits performed using the Gibbs covariance kernel
with a covariance length scale function which is an exponential of four Gaussian
basis functions, presented as in figure 2.16. There is a very high uncertainty in
the covariance length scale function and lots of extra structure in both the core
value and gradient; this is an indication that the prior distribution is insufficiently
informative. The effective warping function stretches out the edge slightly more
than the Gibbs + tanh and Gibbs + exponential of one Gaussian cases. This figure
was produced using synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure a.3: Synthetic data and fits performed using the se covariance kernel with
beta-cdf input warping function, presented as in figure 2.16. The effective length
scale function ℓ was computed from equation (b.93). The first and last points in the
plots of ℓ and w were removed because they go to infinity when α or β < 1. There
is too much additional structure in the value and gradient for this approach to be
useful for tokamak profile fitting. The effective length scale is very long in the core
and somewhat long in the flat region outside of the pedestal, with a short value at
and inside the pedestal. This short length scale region is what is responsible for the
wiggles in the profile over the region 0.6 ≤ x ≤ 1. This figure was produced using
synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure a.4: Synthetic data and fits performed using the se covariance kernel with 2-
knot I-spline input warping function, presented as in figure a.3. There is additional
structure in the value and gradient, comparable to the level of the Gibbs + exponen-
tial of four Gaussians case. The effective covariance length scale is fairly low through-
out the profile which is responsible for the wiggles in the profile over the region
0.5 ≤ x ≤ 1. This figure was produced using synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure a.5: Marginal posterior distributions for the hyperparameters of the fit to
synthetic data using the Gibbs covariance kernel with tanh covariance length scale
function. The distribution appears to have two modes which are blurred together:
one centered around ℓ1 ≈ 0.6 and one centered around ℓ1 ≈ 1. This figure was
produced using synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure a.6: Marginal posterior distributions for the hyperparameters of the fit
to synthetic data using the Gibbs covariance kernel with covariance length scale
function which is an exponential of a single Gaussian basis function. The center
of the Gaussian, μ1, was constrained to lie in the interval [0, 1.1] where the data are
present which is why the distribution terminates there. This figure was produced
using synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py


318 Appendix a. Supporting material from chapter 2

0.5
1.0
1.5
2.0

ℓ 0

−1.5
0.0
1.5
3.0

β 1

−2
−1
0
1
2

β 2

−1.5
0.0
1.5
3.0

β 3

0.
8

1.
6

2.
4

3.
2

σf

−3
−2
−1
0

β 4

0.
5

1.
0

1.
5

2.
0

ℓ0

−
1.
5 0.
0

1.
5

3.
0

β1

−
2

−
1 0 1 2

β2 −
1.
5 0.
0

1.
5

3.
0

β3

−
4

−
3

−
2

−
1 0

β4

0
40
0

80
0

12
00

16
00

step

0
40
0

80
0

12
00

16
00

step

0
40
0

80
0

12
00

16
00

step

0
40
0

80
0

12
00

16
00

step

0
40
0

80
0

12
00

16
00

step

0
40
0

80
0

12
00

16
00

step

Gibbs + exp(4 Gaussians)

Figure a.7: Marginal posterior distributions for the hyperparameters of the fit
to synthetic data using the Gibbs covariance kernel with covariance length scale
function which is an exponential of a sum of four Gaussian basis functions. The
distributions for the coefficients β1 through β3 are very similar to the 𝒩 (0, 1) prior
distributions. The final weight, β4, however, is very clearly negative which causes
the covariance length scale to decrease at the edge. This figure was produced using
synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure a.8: Marginal posterior distributions for the hyperparameters of the fit to
synthetic data using the se covariance kernel with beta-cdf input warping function.
Despite the fact that β < 1 would be what is needed to stretch out the edge of the
domain, the posterior distribution for β very clearly favors positive values. Therefore,
both the edge and the core are compressed, effectively stretching the area around
midradius. This is likely because the pedestal is too far from the edge of the fitting
domain 0 ≤ x ≤ 1.1 for the intuitive interpretation of β to apply. This figure was
produced using synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure a.9: Marginal posterior distributions for the hyperparameters of the fit to
synthetic data using the se covariance kernel with 2-knot I-spline input warping
function. The coefficients were restricted to be positive to ensure a monotonic input
warping function, which is why the distribution for C2 terminates at that edge of
the domain. The high value of C3 causes the edge to be stretched out, whereas the
low value of C2 causes the region just outside of midradius to be compressed. This
figure was produced using synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Figure a.10: Marginal posterior distributions for the hyperparameters of the fit to
synthetic data using the se covariance kernel with 3-knot I-spline input warping
function. The coefficients were restricted to be positive to ensure a monotonic input
warping function, which is why the distributions for C2 and C3 terminate at that
edge of the domain. The very low values of C2 and C3 are what account for the
compression of the flat region just outside of midradius and the comparatively high
value of C4 causes the edge to be stretched out. This figure was produced using
synthetic_test_nonstationary.py.

https://github.com/markchil/thesiscode/blob/master/synthetic_test_nonstationary.py
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Table a.1: Summary statistics of the posterior distributions for the hyperparameters
of the various non-stationary fits to synthetic data.

Parameter Mode Mean 95% interval

Gibbs covariance kernel + tanh covariance length scale function
σf 1.16 1.99 [ 0.615 , 5.54 ]
ℓ1 1.00 0.947 [ 0.537 , 1.30 ]
ℓ2 0.592 0.505 [ 0.180 , 0.962 ]
ℓw 0.0473 0.0462 [ 0.0206, 0.0738]
x0 1.03 1.03 [ 0.988 , 1.05 ]

Gibbs covariance kernel + exponential of one Gaussian
σf 0.788 1.44 [ 0.520 , 3.58 ]
ℓ0 0.689 0.690 [ 0.473 , 1.02 ]
μ1 1.10 1.08 [ 1.03 , 1.10 ]
σ1 0.0725 0.0782 [ 0.0364, 0.148 ]
β1 1.30 −0.00551 [−1.65 , 1.82 ]

Gibbs covariance kernel + exponential of four Gaussians
σf 0.640 0.972 [ 0.353 , 3.28 ]
ℓ0 0.847 0.913 [ 0.484 , 1.54 ]
β1 0 0.382 [−1.07 , 2.00 ]
β2 0.367 −0.0390 [−1.28 , 1.19 ]
β3 0.733 0.732 [−0.945 , 2.70 ]
β4 1.10 −2.21 [−3.10 , −0.482 ]

se covariance kernel + beta-cdf input warping function
σf 2.07 10.2 [ 1.20 , 34.2 ]
ℓ 0.376 0.498 [ 0.302 , 0.712 ]
α 2.59 2.72 [ 2.32 , 3.28 ]
β 1.41 1.46 [ 1.15 , 1.66 ]

se covariance kernel + 2-knot I-spline input warping function
σf 0.565 0.740 [ 0.355 , 1.62 ]
C1 1 0.911 [ 0.363 , 1.62 ]
C2 0 0.448 [ 0.0121, 1.56 ]
C3 1.10 3.83 [ 2.81 , 5.36 ]

se covariance kernel + 3-knot I-spline input warping function
σf 0.508 0.599 [ 0.300 , 1.27 ]
t2 1 0.816 [ 0.496 , 0.965 ]
C1 0 0.796 [ 0.305 , 1.56 ]
C2 0.930 0.391 [ 0.0114, 1.47 ]
C3 1.10 0.374 [ 0.0102, 1.68 ]
C4 0.618 2.56 [ 1.20 , 5.27 ]
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a.2 Material from section 2.5.2: Fit including tci data

This section contains the following material:

1. Figure a.11 shows themarginal posterior distributions for the hyperparameters
of the fit to Alcator C-Mod shot 1120907032 using only the Thomson scattering
data.

2. Figure a.12 shows themarginal posterior distributions for the hyperparameters
of the fit to Alcator C-Mod shot 1120907032 using the core and edge Thomson
scattering data combined with the tci data.

3. Figure a.13 shows themarginal posterior distributions for the hyperparameters
of the fit to Alcator C-Mod shot 1120907032 using only the edge Thomson
scattering and tci data.
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Figure a.11: Marginal posterior distributions for the hyperparameters of the fit
to Alcator C-Mod shot 1120907032 using only the Thomson scattering data. This
figure was produced using ne_TCI_test.py.

https://github.com/markchil/thesiscode/blob/master/ne_TCI_test.py
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Figure a.12: Marginal posterior distributions for the hyperparameters of the fit to
Alcator C-Mod shot 1120907032 using the core and edge Thomson scattering data
combined with the tci data. This figure was produced using ne_TCI_test.py.

https://github.com/markchil/thesiscode/blob/master/ne_TCI_test.py
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Figure a.13: Marginal posterior distributions for the hyperparameters of the fit to
Alcator C-Mod shot 1120907032 using only the edge Thomson scattering and tci
data. This figure was produced using ne_TCI_test.py.

https://github.com/markchil/thesiscode/blob/master/ne_TCI_test.py
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a.3 Material from section 2.5.3: Computing second
derivatives to investigate rotation reversals

This section contains the following material:

• Table a.2 gives the summary statistics of the posterior distributions for the
hyperparameters of the fits for Alcator C-Mod shots 1120221011 and 1120221012.

• Figure a.14 shows themarginal posterior distributions for the hyperparameters
of the fits to the profiles for Alcator C-Mod shots 1120221011 and 1120221012.

Table a.2: Summary statistics of the posterior distributions for the hyperparameters
of the fits for Alcator C-Mod shots 1120221011 and 1120221012.

Quantity Case Parameter [units] Mode Mean 95% interval

ne hollow σf [1020 m−3] 1.35 13.6 [1.07 , 45.9 ]
ℓ 1.23 3.10 [0.929, 7.19 ]

ne peaked σf [1020 m−3] 1.09 13.1 [0.854, 46.1 ]
ℓ 1.18 3.13 [0.913, 7.40 ]

Te hollow σf [keV] 1.20 1.92 [0.835, 5.16 ]
ℓ 0.317 0.355 [0.255, 0.510]

Te peaked σf [keV] 1.33 2.09 [0.933, 5.17 ]
ℓ 0.313 0.344 [0.247, 0.477]
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(a) 1120221011 (higher density, hollow rotation profile)

Figure a.14: (Continues on the facing page.)
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(b) 1120221012 (lower density, peaked rotation profile)

Figure a.14: (Continued from the facing page.) Marginal posterior distributions
for the hyperparameters of the fits to the profiles for Alcator C-Mod shots (a)
1120221011 and (b) 1120221012. Both pairs of profiles ended up with nearly identical
posterior distributions. These figures were produced using ne_rotation.py and
Te_rotation.py.

https://github.com/markchil/thesiscode/blob/master/ne_rotation.py
https://github.com/markchil/thesiscode/blob/master/Te_rotation.py
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a.4 Material from section 2.5.4: 2d fitting of sawtooth-free
data

This section contains the following material:

• Figure a.15 shows the univariate and bivariate marginal posterior distributions
and mcmc sampler chains for the hyperparameters of the 2d se covariance
function with added homoscedastic noise.

• Figure a.16 shows themarginal posterior distributions for the hyperparameters
for the evaluation of the sawtooth-free Te profiles at various time points.

• Figure a.17 shows themarginal posterior distributions for the hyperparameters
of the 1d sawtooth-free Te profiles with various averaging schemes.
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Figure a.15: Univariate and bivariate marginal posterior distributions and mcmc
sampler chains for the hyperparameters of the 2d se covariance function with
added homoscedastic noise. The temporal covariance length scale is ℓt and the
spatial covariance length scale is ℓ. The results are presented as in figure 2.21.
Approximately 30 eV of additional noise appears to be necessary to explain the
observed scatter in the data points. The data clearly favor long temporal covariance
length scales, but the time window is not long enough nor is the prior distribution
informative enough for the posterior distribution to develop a clear mode. This
figure was produced using LH_2d.py.

https://github.com/markchil/thesiscode/blob/master/LH_2d.py
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Figure a.16: (Continues on the facing page.)
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Figure a.16: (Continued from the facing page.) Marginal posterior distributions for
the hyperparameters for the evaluation of the sawtooth-free Te profiles at various
time points. The posterior distributions are fairly similar between all four cases,
with the biggest difference being in the additional homoscedastic noise inferred, σn.
These figures were produced using LH_2d.py.

https://github.com/markchil/thesiscode/blob/master/LH_2d.py
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Figure a.17: (Continues on the facing page.)
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Figure a.17: (Continued from the facing page.) Marginal posterior distributions
for the hyperparameters of the 1d sawtooth-free Te profiles with various averaging
schemes. With all of the points included, a second mode appears for the spatial
covariance length scale ℓ. This secondmode is in the same position as the dominant
mode in the posterior distribution from the 2d fit (figure a.15). If a prior distribution
which favors shorter length scales were used instead, this mode would likely have
been the dominant one. The prior distribution was chosen to prevent unphysical
fine scale structure from occurring, however. With the “σ/√n” averaging, a slightly
higher level of additional homoscedastic noise σn is inferred. These figures were
produced using LH_2d.py.

https://github.com/markchil/thesiscode/blob/master/LH_2d.py


b
Covariance kernels
This chapter explores a variety of covariance kernels which have potential applica-
tions to tokamak profile fitting, as well as other, general-purpose applications of
Gaussian process regression. Everything described in this chapter is supported by
the gptools code [306, 307] described in appendix e. Two key design objectives
of gptools were to support data of arbitrary dimension and derivatives of arbi-
trary order where possible, which is why this section carries out its calculations to
such a high degree of generality. Recall from section 2.3.1 that a covariance kernel
k(xi, xj) ≡ cov[y(xi), y(xj)] is a function which maps from a pair of coordinates to
a real number (i.e., k ∶ 𝒳 × 𝒳 → R where xi, xj ∈ 𝒳 and 𝒳 can be any set). In
this work, each of the coordinates xi, xj will be real vectors with D elements (i.e.,
xi, xj ∈ RD), though in general one can construct covariance kernels which operate
on more general objects such as matrices or strings. The introduction given in sec-
tion 2.3 focussed on stationary covariance kernels which are a function of τ = xi −xj
only (and hence are invariant to translations) and isotropic covariance kernels which
are a function of r = |τ| = |xi − xj| only (and hence vary the same in all dimen-
sions). Most isotropic covariance kernels only depend on the ratio r/ℓ, where ℓ is
the covariance length scale. This formulation is too restrictive for general use, since
different input dimensions can have dramatically different covariance length scales
or even different units. In general, one can make the substitution r2 → τTMτ to
introduce anisotropy into an isotropic covariance kernel, where M is any positive
semidefinite matrix. This work takes M to be diagonal and uses the substitution

r2

ℓ2 →
D

∑
d=1

τ2d
ℓ2
d

=
D

∑
d=1

(xid − xjd)
2

ℓ2
d

, (b.1)

where each dimension has its own covariance length scale ℓd.
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b.1 The squared exponential covariance kernel

The squared exponential (se) covariance kernel was introduced in equation (2.5),
and is a very useful kernel because it encodes the assumption that the fitted curve
should be infinitely differentiable. Substituting equation (b.1), the general form of
the se covariance kernel is

kse(xi, xj) = kse(τ) = σ2f exp
(

−1
2

D

∑
d=1

τ2d
ℓ2
d )

= σ2f exp
(

−1
2

D

∑
d=1

(xid − xjd)
2

ℓ2
d )

.

(b.2)

While the functional form of this expression causes some authors refer to this as a
“Gaussian” covariance kernel, this nomenclature is avoided as this does not represent
a probability distribution, it represents the spatial structure of the covariance of a
probability distribution.

Turning the sum in the middle expression in equation (b.2) into a product yields

kse(xi, xj) = σ2f

D

∏
d=1

exp (−
τ2d
2ℓ2

d
) . (b.3)

Recall the Rodrigues representation of the (physicists’) Hermite polynomials Hn(x)
[464]:

Hn(x) = (−1)nex
2 dn

dxn
e−x2, (b.4)

where [294, 465]:

Hn(x) = n!
⌊n/2⌋

∑
l=0

(−1)l(2x)n−2l

l! (n − 2l)!
. (b.5)

Rearranging,

dn

dxn
e−x2 = (−1)nHn(x)e−x2. (b.6)

To find the derivatives of equation (b.3), first find

dn

dτnd
exp (−

τ2d
2ℓ2

d
) =

(
1

√2ℓd )

n
dn

dxn
e−x2 =

(
−1

√2ℓd )

n

Hn (
τd

√2ℓd )
exp (−

τ2d
2ℓ2

d
) , (b.7)
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where the substitution x = τd/(√2ℓd) was used. The derivative of equation (b.3) to
arbitrary orders for each dimension is then

∂nkse(τ)
∏D

d=1 ∂τndd
= σ2f

D

∏
d=1 (

−1
√2ℓd )

nd

Hnd (
τd

√2ℓd )
exp (−

τ2d
2ℓ2

d
) (b.8)

= kse(τ)
D

∏
d=1 (

−1
√2ℓd )

nd

Hnd (
τd

√2ℓd )
, (b.9)

where n = ∑D
d=1 nd and nd is the order of derivative with respect to dimension

d. What is needed to apply equation (2.29) and equation (2.30), however, are the
derivatives with respect to xid and xjd . Note that

τd = xid − xjd ,
∂τd
∂xid

= 1,
∂τd
∂xjd

= −1 (b.10)

∂ni+njτd
∂xniid ∂x

nj
jd

= 0, for ni + nj ≥ 2. (b.11)

Applying the chain rule to equation (b.9) then gives

∂nkse(τ(xi, xj))

∏D
d=1 ∂x

nid
id

∏D
d=1 ∂x

njd
jd

=
∂nkse(τ)

∏D
d=1 ∂τ

nid+njd
d

D

∏
d=1 (

∂τd
∂xid )

nid D

∏
d=1 (

∂τd
∂xjd )

njd
(b.12)

= kse(τ)
D

∏
d=1 (

−1
√2ℓd )

nid+njd
Hnid+njd (

τd
√2ℓd )

⋅
D

∏
d=1

(−1)njd

(b.13)

= kse(τ)
D

∏
d=1

(−1)nid+2njd

(√2ℓd)nid+njd
Hnid+njd (

τd
√2ℓd )

, (b.14)

where n = ∑D
d=1 nid + ∑D

d=1 njd , nid is the order of derivative with respect to di-
mension d of xi and njd is the order of derivative with respect to dimension d of xj.
Equation (b.14) enables gptools to compute derivatives of arbitrary order for data
of arbitrary dimensionality. A plot of the 1d se covariance kernel and its first few
derivatives is provided in figure b.1 and plots of the 2d se covariance kernel and its
first few derivatives are provided in figure b.2.

One final piece of useful information is the derivative of the se covariance ker-
nel with respect to the hyperparameters, which enables the use of gradient-based
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optimizers and advanced types of mcmc sampling. The derivative with respect to σf
is trivial:

∂kse(τ)
∂σf

= 2σf
D

∏
d=1

exp (−
τ2d
2ℓ2

d
) (b.15)

∂
∂σf

∂nkse(τ(xi, xj))

∏D
d=1 ∂x

nid
id

∏D
d=1 ∂x

njd
jd

= 2
σf

∂nkse(τ(xi, xj))

∏D
d=1 ∂x

nid
id

∏D
d=1 ∂x

njd
jd

, (b.16)

where in the last expression the limit as σf → 0 is zero. To find the derivatives with
respect to the covariance length scales ℓd, first note

∂kse(τ)
∂ℓe

= σ2f

D

∏
d=1

exp (−
τ2d
2ℓ2

d
)

τ2e
ℓ3
e

=
τ2e
ℓ3
e
kse(τ). (b.17)

Note that the derivative of a Hermite polynomial is [294, 466]

dHn(x)
dx

= 2nHn−1(x). (b.18)

Therefore, the derivative of equation (b.9) with respect to covariance length scale ℓe
is

∂
∂ℓe

∂nkse(τ)
∏D

d=1 ∂τndd
=

∂kse(τ)
∂ℓe

D

∏
d=1 (

−1
√2ℓd )

nd

Hnd (
τd

√2ℓd )

+ I(ne > 0)kse(τ)ne (
−1

√2ℓe )

ne−1 1
√2ℓ2

e
Hne (

τe
√2ℓe )

⋅
D

∏
d=1
d≠e

(
−1

√2ℓd )

nd

Hnd (
τd

√2ℓd )

+ I(ne > 0)kse(τ)
(

−1
√2ℓe )

ne

2neHne−1 (
τe

√2ℓe )

⋅
−τe

√2ℓ2
e

D

∏
d=1
d≠e

(
−1

√2ℓd )

nd

Hnd (
τd

√2ℓd )
(b.19)
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= kse(τ)
D

∏
d=1 (

−1
√2ℓd )

nd

Hnd (
τd

√2ℓd ) (
τ2e
ℓ3
e

− I(ne > 0)
ne
ℓe

− I(ne > 0)
√2neτe

ℓ2
e

Hne−1(τe/(√2ℓe))

Hne(τe/(√2ℓe)) ), (b.20)

where

I(ne > 0) =
{

1, ne > 0
0, otherwise

(b.21)

is an indicator function. This then gets multiplied by another factor of ∏D
d=1(−1)njd

to arrive at the derivative of equation (b.14) with respect to ℓe.

b.2 The rational quadratic covariance kernel

The rational quadratic (rq) covariance kernel is a stationary, isotropic covariance
kernel with the basic form

krq(r) = σ2f (1 + r2

2αℓ2)

−α
, (b.22)

where α > 0 and σf and ℓ have similar interpretations as for the se covariance kernel.
As noted in [297], this covariance kernel can be obtained as an infinite sum over
se covariance kernels with different covariance length scales, the mixture of which
is determined by α. Note that as α → ∞ the rq covariance kernel reduces to the
se covariance kernel with covariance length scale ℓ. Making the substitution from
equation (b.1) yields

krq(xi, xj) = krq(τ) = σ2f (
1 + 1

2α

D

∑
d=1

τ2d
ℓ2
d )

−α

. (b.23)

In order to get this into a form which can be differentiated, define

y = 1 + 1
2α

D

∑
d=1

τ2d
ℓ2
d

. (b.24)

The rq kernel is then simply

krq(y) = σ2f y
−α, (b.25)
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Figure b.1: One-dimensional squared exponential covariance kernel and a few of
its derivatives. The horizontal scale has been scaled by ℓ and the vertical scale
has been scaled by σ2f to remove the dependence on the hyperparameters. The
solid blue curve gives kse(0, x) itself. Notice that this curve is infinitely differ-
entiable and has dropped in value significantly by x/ℓ = 1. The long-dashed
curves give the functions necessary for dealing with first derivatives. The green
dashed curve is ∂kse/∂xj = cov[y(0), y′(x)]. The red dashed curve is ∂kse/∂xi =
cov[y′(0), y(x)]. The opposite signs of the red and green curves may be disturb-
ing on first glance, given that the covariance kernel must give rise to a symmetric
positive definite covariance matrix. But, the symmetry that matters here is of lo-
cations and derivatives: cov[y(0), y′(x)] = cov[y′(x), y(0)], which does hold. The
teal dashed curve is ∂2kse/∂xi ∂xj = cov[y′(0), y′(x)]. The dotted curves give the
functions necessary for dealing with second derivatives. The magenta dotted curve
is ∂2kse/∂x2i = ∂2kse/∂x2j = cov[y′′(0), y(x)] = cov[y(0), y′′(x)]. The yellow dotted
curve is ∂3kse/∂xi ∂x2j = cov[y′(0), y′′(x)]. The black dotted curve is ∂3kse/∂x2i ∂xj =
cov[y′′(0), y′(x)]. The blue dotted curve is ∂4kse/∂x2i ∂x2j = cov[y′′(0), y′′(x)]. This
figure was produced using kernel_demo.py.

https://github.com/markchil/thesiscode/blob/master/kernel_demo.py
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Figure b.2: Two-dimensional squared exponential covariance kernel and a few
of its derivatives. To remove the dependence on the hyperparameters, the x axis
has been scaled by ℓx, the y axis by ℓy and the vertical axis by σ2f . Positive values
are red, negative values are blue and zero values are white. The subscripts in the
titles indicate partial derivatives: zxy = ∂2z/(∂x ∂y), for instance. This figure was
produced using kernel_demo_2d.py.

https://github.com/markchil/thesiscode/blob/master/kernel_demo_2d.py
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the derivatives of which are [294, 467]

dnkrq(y)
dyn

= σ2f (−α)(−α − 1) … (−α − n + 1)y−α−n. (b.26)

This can be simplified1 through the introduction of the Pochhammer symbol for the
rising factorial [294, 295, 347, 468–471]:

(a)n =
n−1

∏
k=0

(a + k) = Γ(a + n)
Γ(a)

, (b.27)

where Γ(a) is the gamma function [294, 295]. For the case of integer a ≤ 0 and
n ≤ −a, the latter expression with the gamma function breaks down, and the correct
expression is [468, 472]:

(a)n = (−1)n(−a)!
(−a − n)!

. (b.28)

Expressing equation (b.26) in terms of the Pochhammer symbol yields

dnkrq(y)
dyn

= σ2f (1 − α − n)ny−α−n. (b.29)

Applying the chain rule to this is far more involved than for the se covariance kernel,
as y does not factor out nicely into a series of independent products like equation (b.3).
Instead, apply Faà di Bruno’s formula, given here in the very useful combinatorial
form presented in [473]:

∂n

∂x[1] … ∂x[n]
f (y(x)) = ∑

π∈Π
f (|π|)(y(x)) ∏

B∈π

∂|B|y(x)
∏j∈B ∂x[j]

. (b.30)

The notation for the partial derivatives here is necessarily somewhat more involved
than what has been used elsewhere in this section. The variables x[1] through x[n]
are placeholders for which of the elements of x = [x1, x2, … , xd]T to differentiate
with respect to. In other words, to take the second derivative with respect to x3 (i.e.,
∂2f /∂x23), in equation (b.30) one would set n = 2, x[1] = x3, x[2] = x3. To compute
∂4f /∂x23 ∂x4∂x10, one would set n = 4, x[1] = x3, x[2] = x3, x[3] = x4, x[4] = x10. The
other non-trivial nomenclature in equation (b.30) is as follows:

1. The Pochhammer symbol is in fact terrible notation, and is used to denote the rising or the falling
factorial depending on the context. But SciPy [293] provides an implementation of the rising factorial
as defined in equation (b.27) and resources such as [294, 347, 468] use it extensively, so this notation is
used to make it clear what is used in the gptools implementation.
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• Π is the set of all possible partitions of the set {1, … , n}. A partition is a
division of a set into subsets, where each element appears in one and only one
subset [474]. Each subset in a partition is referred to as a block.

• π is one such partition.

• |π| is the number of blocks in partition π.

• B is a block in the partition π.

• |B| is the number of elements in block B.

In order to use this expression, first note

∂y
∂τd

=
τd
αℓ2

d
,

∂2y
∂τ2d

= 1
αℓ2

d
,

∂3y
∂τ3d

= 0,
∂2y

∂τd ∂τe
= 0. (b.31)

This means that only blocks of length one and length two with both elements refer-
ring to the same dimension of τ need to be considered. The derivatives of τd with
respect to xid and xjd are as in equation (b.10) and equation (b.11). It is not possible
to write quite so direct of a formula as equation (b.14), but these pieces are what
are used to implement the rational quadratic covariance kernel in gptools. Refer
to section e.4.1.3 and section e.4.4 for more details on the actual implementation.
Plots of the 1d rq covariance kernel and its first few derivatives for a few values of α
are provided in figure b.3 and plots of the 2d rq covariance kernel and its first few
derivatives for α = 1/2 are provided in figure b.4.

b.3 The Matérn covariance kernel

The Matérn covariance kernel is a stationary, isotropic covariance kernel with the
basic form

kM(r) = σ2f
21−ν

Γ(ν) (
√2νr

ℓ )

ν

Kν (
√2νr

ℓ )
, (b.32)

where Kν(z) is the modified Bessel function of the second kind [294, 475]. The
Matérn covariance function yields curves which are only differentiable up to order
n < ν. As ν → ∞, the Matérn covariance kernel reduces to the se covariance kernel
with covariance length scale ℓ. It has been suggested that the Matérn covariance
kernel is better suited to describe real data than the se covariance kernel, as the infi-
nite differentiability implied by the se covariance kernel is a rather strong constraint
[301].
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Figure b.3: One-dimensional rational quadratic covariance kernel and its deriva-
tives for α ∈ {1/2, 2, 10} and a comparison of krq for α ∈ {1/2, 2, 10, ∞}. The plots
for the various values of α are presented in the same manner as figure b.1, and have
the same scale. Notice that the curves have very long tails for small α, which then
move down towards the limiting se case as α → ∞. This figure was produced using
kernel_demo.py.

https://github.com/markchil/thesiscode/blob/master/kernel_demo.py
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Figure b.4: Two-dimensional rational quadratic covariance kernel and a few of its
derivatives for α = 1/2, presented as in figure b.2. This figure was produced using
kernel_demo_2d.py.

https://github.com/markchil/thesiscode/blob/master/kernel_demo_2d.py
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Making the substitution from equation (b.1) yields

kM(xi − xj) = kM(τ) = σ2f
21−ν

Γ(ν) (
2ν

D

∑
d=1

τ2d
ℓ2
d )

ν/2

Kν ((
2ν

D

∑
d=1

τ2d
ℓ2
d )

1/2

)
. (b.33)

To get this into a form which can be differentiated, define

y = 2ν
D

∑
d=1

τ2d
ℓ2
d

. (b.34)

The Matérn covariance kernel is then

kM(y) = σ2f
21−ν

Γ(ν)
yν/2Kν(y1/2). (b.35)

To differentiate this, note that Faà di Bruno’s formula can be expressed in a partic-
ularly useful form for single variables using the partial Bell polynomials Bn,k [347,
476, 477]:

dn

dxn
f (g(x)) =

n

∑
k=1

f (k)(g(x))Bn,k(g′(x), g′′(x), … , g (n−k+1)(x)) (b.36)

Bn,k(x1, x2, … , xn−k+1) = ∑ n!
n−k+1

∏
i=1

1
ji! (

xi
i! )

ji , (b.37)

where the sum is over all sets of j = {ji} such that ∑n−k+1
i=1 ji = k and ∑n−k+1

i=1 iji = n.
The partial Bell polynomials can be written in a useful recursive form as [478]:

Bn,k(x1, x2, … , xn−k+1) =
n−k+1

∑
i=1

(
n − 1
i − 1)xiBn−i,k−1 (b.38)

B0,0 = 1, Bn,0 = δn, B0,k = δk, (b.39)

where

δn =
{

1, n = 0
0, otherwise

(b.40)

is the Kronecker delta. Note that the derivative of the modified Bessel function of
the second kind is [468, 479]:

dn

dyn
Kν(y) = (−1)n

2n

n

∑
k=0

(
n
k)K2k−n+ν(y). (b.41)
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Also recall that [294, 467]

dn

dyn
ya = (1 + a − n)nya−n, (b.42)

so

dny1/2

dyn
= (3/2 − n)ny1/2−n (b.43)

The derivatives of Kν(y1/2) are then

dn

dyn
Kν(y1/2) =

n

∑
k=1 (

(−1)k

2k

k

∑
j=0

(
k
j)

K2j−k+ν(y1/2)
)

⋅ Bn,k (
1

2y1/2 , −1
4y3/2 , … , (3/2 − n + k − 1)n−k+1y

1/2−n+k−1
) (b.44)

Apply the general Leibniz rule [347, 480]

dn

dyn (a(y)b(y)) =
n

∑
k=0

(
n
k)

dka(y)
dyk

dn−kb(y)
dyn−k

(b.45)

to obtain the derivatives of kM(y):

dnkM(y)
dyn

= σ2f
21−ν

Γ(ν)

n

∑
k=0

(
n
k)

dkyν/2

dyk
dn−kKν(y1/2)

dyn−k
(b.46)

= σ2f
21−ν

Γ(ν) (

n

∑
k=0

(
n
k)(1 + ν/2 − k)kyν/2−k

n−k

∑
j=1 (

(−1)j

2j

j

∑
i=0

(
j
i)

K2i−j+ν(y1/2)
)

⋅ Bn−k,j (
1

2y1/2 , −1
4y3/2 , … , (3/2 − n + k + j − 1)n−k−j+1y

1/2−n+k+j−1
) ).

(b.47)

Finally, note that

∂y
∂τd

=
4ντd
ℓ2
d

,
∂2y
∂τ2d

= 4ν
ℓ2
d

,
∂3y
∂τ3d

= 0,
∂2y

∂τd ∂τe
= 0. (b.48)

These expressions can then be used with equation (b.30) to compute the derivatives
of the Matérn covariance kernel. Refer to section e.4.1.3 and section e.4.5 for more
details on the actual implementation. Plots of the 1d Matérn covariance kernel for
various values of ν are given in figure b.5 and plots of the 2d Matérn covariance
kernel with various values of ν are given in figure b.6 through figure b.8.
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Figure b.5: One-dimensional Matérn covariance kernel and its derivatives for ν ∈
{1/2, 3/2, 5/2} and a comparison of kM for ν ∈ {1/2, 3/2, 5/2, ∞}. The plots for the
various values of ν are presented in the same manner as figure b.1, and have the
same scale. Only the derivatives needed for n < ν are shown. Notice that the curves
for small ν have wider tails but narrower cores than the se covariance kernel, and
gradually approach the se covariance kernel’s shape as ν → ∞. This figure was
produced using kernel_demo.py.

https://github.com/markchil/thesiscode/blob/master/kernel_demo.py
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Figure b.6: Two-dimensional Matérn covariance kernel for ν = 1/2, presented as
in figure b.2. Just cov[z(0, 0), z(x, y)] is shown. Notice the cusp at the origin – this
corresponds to the fact that a Gaussian process with aMatérn covariance kernel with
ν = 1/2 is not differentiable. This figure was produced using kernel_demo_2d.py.

b.3.1 Handling the behavior as y → 0

Equation (b.47) is very poorly behaved near the origin, as Kν(y) ∝ y−ν as y → 0.
Therefore, successful implementation of equation (b.47) requires careful attention
to the behavior as y → 0. Because the modified Bessel function of the second kind
for integer order ν is defined with a limit, the cases where ν is an integer versus not
require separate handling.

b.3.1.1 ν is not an integer

In all of the following, assume ν ≥ 1/2. The power series for Kν(z) for ν ∉ Z is [468,
481]:

Kν(z) = Γ(ν)
21−ν z

−ν
∞

∑
k=0

z2k

22k(1 − ν)kk!
+ Γ(−ν)

21+ν zν
∞

∑
k=0

z2k

22k(1 + ν)kk!
. (b.49)

Now substitute z = y1/2 and multiply this by yν/2:

yν/2Kν(y1/2) = Γ(ν)
∞

∑
k=0

yk

21−ν+2k(1 − ν)kk!
+ Γ(−ν)

∞

∑
k=0

yν+k

21+ν+2k(1 + ν)kk!
. (b.50)

https://github.com/markchil/thesiscode/blob/master/kernel_demo_2d.py
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Figure b.7: Two-dimensional Matérn covariance kernel and a few of its derivatives
for ν = 3/2, presented as in figure b.2. Notice the cusp at the origin of the nix =
njx = 1 and niy = njy = 1 plots – this corresponds to the fact that a Gaussian process
with a Matérn covariance kernel with ν = 3/2 can only be differentiated once. This
figure was produced using kernel_demo_2d.py.

https://github.com/markchil/thesiscode/blob/master/kernel_demo_2d.py
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Figure b.8: Two-dimensional Matérn covariance kernel and a few of its deriva-
tives for ν = 5/2, presented as in figure b.2. Notice the cusp at the origin of the
nix = njx = niy = njy = 1 plot – this corresponds to the fact that a Gaussian process
with a Matérn covariance kernel with ν = 5/2 can only be differentiated twice. This
figure was produced using kernel_demo_2d.py.

https://github.com/markchil/thesiscode/blob/master/kernel_demo_2d.py
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Applying equation (b.42), the derivative of yν/2Kν(y1/2) is

dn

dyn (yν/2Kν(y1/2)) = Γ(ν)
∞

∑
k=n

(1 + k − n)nyk−n

21−ν+2k(1 − ν)kk!
+ Γ(−ν)

∞

∑
k=0

(1 + ν + k − n)nyν+k−n

21+ν+2k(1 + ν)kk!
,

(b.51)

where the first sum can start from k = n because (1 + k − n)n = 0 for n > k when
n and k are nonnegative integers. The first sum can never have any terms which
diverge, since k and n are both integers. So, the second term is what determines
if the function is finite or not. It will diverge first (and most strongly) for k = 0,
which means that the criterion for the sum to diverge is n > ν. For n ≤ ν, the limit
is determined by the first surviving term in each sum. For the case where ν is not
an integer, the second sum can never have an exponent of zero, so we only need
to consider the first sum. The first term which survives is k = n, so the limit for
ν ∉ Z ∧ n ≤ ν is

lim
y→0

dn

dyn (yν/2Kν(y1/2)) =
Γ(ν)(1)n

21−ν+2n(1 − ν)nn!
= Γ(ν)Γ(n + 1)

21−ν+2n(1 − ν)nn!
, (b.52)

where the substitution (1)n = Γ(n + 1)/Γ(1) = Γ(n + 1) was made.
There is one final piece necessary to handle this case: note that this result will

be used in equation (b.30), where it may be multiplied by one or more factors of the
form given in equation (b.48). So, near y = 0,

d|π|

dy|π| (yν/2Kν(y1/2)) ∏
B∈π

∂|B|y(τ)
∏j∈B ∂τj

≈

(
Γ(ν)Γ(n + 1)

21−ν+2n(1 − ν)nn!
+

Γ(−ν)(1 + ν − n)nyν−n

21+ν ) ∏
B∈π

|B|=1

(
4ντb
ℓ2
b

) ∏
B∈π

|B|≠1

∂|B|y(τ)
∏j∈B ∂τj

,

(b.53)

where b ∈ B refers to the single element of the block of size one. If there are any
blocks with |B| = 2 and the indices in the block are not equal or |B| > 2 then this is
zero. Otherwise, the behavior as τ becomes the zero vectormust be handled carefully.
Write equation (b.53) in terms of τd and ignore the first term inside the parenthesis
(which cannot diverge) to obtain:

Γ(−ν)(1 + ν − n)n
21+ν (

2ν
D

∑
d=1

τ2d
ℓ2
d )

ν−n

∏
B∈π

|B|=1

(
4ντb
ℓ2
b

) ∏
B∈π

|B|≠1

∂|B|y(τ)
∏j∈B ∂τj

. (b.54)
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Now, consider two possible paths to take the limit as τ → 0. Let T|B|=1 denote the
set of variables which are included in a block of size one and let n1 be the number
of blocks in π which are size one. (Note that n1 ≥ |T|B|=1| because there may be
multiple single derivatives with respect to a given variable.) For the first path, hold all
τd ∈ T|B|=1 fixed at non-zero values while taking the other τd ∉ T|B|=1 to zero. Then
take the τd ∈ T|B|=1 to zero along the path τd = τ for all τd ∈ T|B|=1. Mathematically,
the first step of this path gives

Γ(−ν)(1 + ν − n)n
21+ν

⎛
⎜
⎜
⎜
⎝

2ν ∑
B∈π

|B|=1

τ2b
ℓ2
b

⎞
⎟
⎟
⎟
⎠

ν−n

∏
B∈π

|B|=1

(
4ντb
ℓ2
b

) ∏
B∈π

|B|≠1

∂|B|y(τ)
∏j∈B ∂τj

, (b.55)

and the second step gives

Γ(−ν)(1 + ν − n)n
21+ν

⎛
⎜
⎜
⎜
⎝

2ντ2 ∑
B∈π

|B|=1

1
ℓ2
d

⎞
⎟
⎟
⎟
⎠

ν−n

∏
B∈π

|B|=1

(
4ντ
ℓ2
b

) ∏
B∈π

|B|≠1

∂|B|y(τ)
∏j∈B ∂τj

(b.56)

= τ2ν−2n+n1
Γ(−ν)(1 + ν − n)n

21+ν

⎛
⎜
⎜
⎜
⎝

2ν ∑
B∈π

|B|=1

1
ℓ2
b

⎞
⎟
⎟
⎟
⎠

ν−n

∏
B∈π

|B|=1

4ν
ℓ2
b

∏
B∈π

|B|≠1

∂|B|y(τ)
∏j∈B ∂τj

. (b.57)

This goes to 0 if 2ν − 2n + n1 > 0, diverges if 2ν − 2n + n1 < 0 and can obtain a
finite value if 2ν − 2n + n1 = 0. But now consider the path which takes all variables
to zero along the path τd = τ at the same time. Mathematically, this gives

Γ(−ν)(1 + ν − n)n
21+ν (

2ν
D

∑
d=1

τ2

ℓ2
d )

ν−n

∏
B∈π

|B|=1

(
4ντ
ℓ2
b

) ∏
B∈π

|B|≠1

∂|B|y(τ)
∏j∈B ∂τj

(b.58)

= τ2ν−2n+n1
Γ(−ν)(1 + ν − n)n

21+ν (
2ν

D

∑
d=1

1
ℓ2
d )

ν−n

∏
B∈π

|B|=1

(
4ν
ℓ2
b

) ∏
B∈π

|B|≠1

∂|B|y(τ)
∏j∈B ∂τj

.

(b.59)

This again goes to zero if 2ν − 2n + n1 > 0, which implies that the limit can exist
in this case. But, when 2ν − 2n + n1 = 0, the limiting value includes a sum over all
1/ℓ2

d instead of just the 1/ℓ2
b for which b are the elements of the blocks with size one.

Therefore, the limit does not exist in this case.
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b.3.1.2 ν is an integer

The case for ν ∈ Z is much more involved, as the convenient power series given in
equation (b.49) breaks down. Instead, Kν(z) is given by the far more cumbersome
series [294, 482]

Kν(z) = 1
21−ν z

−ν
ν−1

∑
k=0

(−1)k(ν − k − 1)!
22kk!

z2k

+ (−1)ν+1 ln (
z
2) Iν(z)

+ (−1)ν

21+ν zν
∞

∑
k=0

ψ(k + 1) + ψ(ν + k + 1)
22kk! (ν + k)!

z2k, (b.60)

where Iν(z) is the modified Bessel function of the first kind [294, 475] and ψ(z) =
Γ′(z)/Γ(z) is the digamma function [294, 295]. Substituting z = y1/2 and multiplying
by yν/2 gives

yν/2Kν(y1/2) =
ν−1

∑
k=0

(−1)k(ν − k − 1)!
21−ν+2kk!

yk

+ (−1)ν+1yν/2 ln
(
y1/2

2 )
Iν(y1/2)

+ (−1)ν
∞

∑
k=0

ψ(k + 1) + ψ(ν + k + 1)
21+ν+2kk! (ν + k)!

yν+k. (b.61)

In order to differentiate this series, note the derivative of themodified Bessel function
of the first kind [468, 483]:

dnIν(z)
dzn

= 2−n
n

∑
k=0

(
n
k)I2k−n+ν(z). (b.62)

Applying equation (b.36), the derivatives of Iν(y1/2) are

dn

dyn
Iν(y1/2) =

n

∑
k=1

2−k
(

k

∑
j=0

(
k
j)

I2j−k+ν(y1/2)
)

⋅ Bn,k (
1

2y1/2 , −1
4y3/2 , … , (3/2 − n + k − 1)n−k+1y

1/2−n+k−1
) . (b.63)

The derivatives of the logarithm in the middle term of equation (b.61) are [468, 484]

dn

dyn
ln

(
y1/2

2 )
= dn

dyn (
1
2

ln y − ln 2) =
S(1)
n

2yn
+ δn ln

(
y1/2

2 )
, (b.64)
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where

S(1)
n =

{
0, n < 1
(−1)n−1(n − 1)! , otherwise

(b.65)

is the first Stirling number of the first kind [347, 485]. Using the general Leibniz rule,
the derivatives of yν/2 ln(y1/2/2) are

dn

dyn (
yν/2 ln

(
y1/2

2 ))
=

n

∑
k=0

(
n
k)(1 + ν/2 − k)kyν/2−k

(
S(1)
n−k

2yn−k
+ δn−k ln

(
y1/2

2 ))
(b.66)

=
n

∑
k=0

(
n
k)(1 + ν/2 − k)k (

S(1)
n−k

2yn−ν/2 + δn−ky
ν/2−k ln

(
y1/2

2 ))
. (b.67)

But the first term in the parenthesis is only nonzero for k < n and the last term is
only nonzero for k = n, so the sum simplifies to

= (1 + ν/2 − n)nyν/2−n ln
(
y1/2

2 )
+

n−1

∑
k=0

(
n
k)

(1 + ν/2 − k)kS
(1)
n−k

2yn−ν/2 . (b.68)

Using this, the derivatives of yν/2 ln(y1/2/2)Iν(y1/2) are

dn

dyn (
yν/2 ln

(
y1/2

2 )
Iν(y1/2)

)
=

n

∑
k=0

(
n
k)

dk

dyk (
yν/2 ln

(
y1/2

2 ))
dn−k

dyn−k
(Iν(y1/2))

=
∞

∑
k=0

(
n
k)

⎛
⎜
⎜
⎝
(1 + ν/2 − k)kyν/2−k ln

(
y1/2

2 )
+

k−1

∑
j=0

(
k
j)

(1 + ν/2 − j)jS
(1)
k−j

2yk−ν/2

⎞
⎟
⎟
⎠

⋅ (

k

∑
j=1

2−j
(

j

∑
i=0

(
j
i)

I2i−j+ν(y1/2)
)

⋅ Bk,j (
1

2y1/2 , −1
4y3/2 , … , (3/2 − k + j − 1)k−j+1y

1/2−k+j−1
) ) (b.69)
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=
∞
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∑
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1
2j (

j

∑
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(
j
i)

I2i−j+ν(y1/2)
)
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1

2y1/2 , −1
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(
n
k)

⎛
⎜
⎜
⎝
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(
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(1)
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⎟
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⎠

(

k
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1
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j

∑
i=0

(
j
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I2i−j+ν(y1/2)
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⋅ Bk,j (
1

2y1/2 , −1
4y3/2 , … , (3/2 − k + j − 1)k−j+1y

1/2−k+j−1
) ). (b.70)

Therefore, the derivatives of equation (b.61) are

dn

dyn (yν/2Kν(y1/2)) =

ν−1

∑
k=n

(−1)k(ν − k − 1)! (1 + k − n)n
21−ν+2kk!
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∞
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∑
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(
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⎜
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(
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⋅ Bk,j (
1

2y1/2 , −1
4y3/2 , … , (3/2 − k + j − 1)k−j+1y

1/2−k+j−1
) )

+ (−1)ν
∞

∑
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(ψ(k + 1) + ψ(ν + k + 1))(1 + ν + k − n)n
21+ν+2kk! (ν + k)!

yν+k−n. (b.71)

This expression is extremely unwieldy, so what is done in practice is to interpolate
between ν − ε and ν + ε for some small value of ε:

dn

dyn (yν/2Kν(y1/2)) ≈ 1
2 (

dn

dyn (y(ν−ε)/2Kν−ε(y1/2)) + dn

dyn (y(ν+ε)/2Kν+ε(y1/2))) .

(b.72)
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b.4 Handling the edge: nonstationary covariance kernels

The covariance kernels presented to this point have all been stationary: they were
functions of τ = xi − xj only and are hence invariant to translations in space. In the
context of the covariance length scale, a stationary covariance kernel has a constant
covariance length scale throughout all of space. In a tokamak plasma, however, the
assumption of stationarity is not justified: the profile is expected to be relatively
macroscopically smooth in the core, then have a rapid change and go to zero at
the edge. Other behavior such as an internal transport barrier or strongly localized
heating can lead to other localized regions of rapid change. This section presents
two possible ways of introducing non-stationarity into a Gaussian process: the Gibbs
covariance kernel which is an se covariance kernel with spatially-varying covariance
length scale and warping of the inputs which allows any stationary covariance kernel
to be made nonstationary. Most of the work in this thesis uses the Gibbs covariance
kernel described in section b.4.1. Note that another way to accomplish a nonstation-
ary fit is to use a parametric mean functionm(x) which fits the extra structure in the
edge, and then use a stationary covariance kernel to fit the residuals from the fit. This
approach was applied to fitting H-mode pedestal data with a modified hyperbolic
tangent mean function in section 2.5.5. Schemes have been devised for efficiently
partitioning the domain into regions governed by different models [486–488], but
this level of sophistication was not attempted in the present work. It should also
be noted that the treed Gaussian process approach as presented in [486–488] gen-
erates realizations which are only piecewise continuous, and hence would require
extensions to generate the differentiable fits required for the profile fitting task.

b.4.1 The Gibbs covariance kernel

Gibbs [395] obtained the following nonstationary version of the se covariance kernel:

kG(xi, xj) = σ2f (

2ℓ(xi)ℓ(xj)
ℓ2(xi) + ℓ2(xj))

1/2

exp
(

−
|xi − xj|2

ℓ2(xi) + ℓ2(xj))
, (b.73)

where the covariance length scale ℓ(x) is now an arbitrary function of x and σ2f is
the signal variance as before. It is important to note that the functional form of ℓ(x)
does not correspond to the functional form of the profile – it merely sets how fast
the profile can vary in space. Letting ℓ be a function of x allows the profile to have
regions with slowly varying spatial structure smoothly joined to regions with more
rapidly varying spatial structure. Because of the complexity of equation (b.73), only
the first few derivatives were worked out, and only the univariate case was handled.
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First, define the following shorthands:

τ = xi − xj, ℓi = ℓ(xi), ℓj = ℓ(xj), ℓ′
i = dℓ(x)

dx |x=xi

, ℓ′
j = dℓ(x)

dx |x=xj

.

(b.74)

The derivatives relevant to the present work are:

∂kG(xi, xj)
∂xi
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ℓj exp ( − τ2/(ℓ2

i + ℓ2
j ))

√2ℓiℓj(ℓ2
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i ))

(b.75)

∂kG(xi, xj)
∂xj
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√2ℓiℓj(ℓ2
i + ℓ2
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(b.76)

∂2kG(xi, xj)
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b.4.1.1 tanh covariance length scale function for tokamak profile fitting

In order to model a tokamak profile, we need a covariance length scale function with
a core saturation value, a shorter edge saturation value to allow the rapid drop at the
edge, and a smooth transition between the two. These requirements motivated the
use of a hyperbolic tangent:

ℓ(x) =
ℓ1 + ℓ2

2
−

ℓ1 − ℓ2
2

tanh
x − x0

ℓw
(b.78)

dℓ(x)
dx

= −
ℓ1 − ℓ2
2ℓw

sech2
x − x0

ℓw
, (b.79)
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where ℓ1 is the core saturation value, ℓ2 is the edge saturation value, x0 is the location
of the center of the transition between the two covariance length scales and ℓw is the
characteristic width of the transition. In light of the popularity of tanh-like functions
for fitting pedestal data it is very important to recall that this is not in any way forcing
the fitted curve to follow a tanh function – it merely dictates the spatial correlation
length as described above. This formulation has the advantage that it yields a curve
which is infinitely differentiable. Plots of the Gibbs covariance kernel with tanh
covariance length scale function for hyperparameters relevant to tokamak profile
fitting are given in figure b.9. Covariance length scale functions consisting of two
constant regions joined with either cubic or quintic polynomials were also tested, but
were found to not produce fits as satisfactory as those using the hyperbolic tangent.
This formulation was tested with synthetic data in section 2.4. This formulation can
easily be extended to include an arbitrary number of regions, for instance adding an
extra region to fit a profile exhibiting an internal transport barrier (itb).

b.4.1.2 More flexible covariance length scale functions

When sufficient data are available, a less restrictive covariance length scale function
can be used. Gibbs [395] uses a set of Gaussian basis functions to construct the
logarithm of the covariance length scale function, which in light of equation (2.19)
is equivalent to constructing a Gaussian process to describe the logarithm of the
covariance length scale function. Li [313] uses a Gaussian process to interpolate
values of the covariance length scale (not its logarithm) given at a small number of
specific points. Several approaches were tested as part of this thesis, and the results
of the benchmarking with synthetic data are given in section 2.4.3.2.

b.4.1.2.1 Exponential of Gaussians First, consider a slight modification of the
exponential of Gaussian basis functions used in [395]:

ℓ(x) = ℓ0 exp
(

N

∑
i=1

βi exp (−
(x − μi)2

2σ2i ))
(b.80)

dℓ(x)
dx

= −ℓ0 exp
(

N

∑
i=1

βi exp (−
(x − μi)2

2σ2i ))

N

∑
i=1

βi(x − μi)
σ2i

exp (−
(x − μi)2

2σ2i ) ,

(b.81)

where ℓ0 is a positive value which sets the value of the covariance length scale
function far from the basis functions, μi are the centers of theN Gaussians, σi are the
widths (i.e., standard deviations) of the Gaussians and βi are the amplitude of each
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Figure b.9: One-dimensional Gibbs covariance kernel kG(xi, xj) with tanh covari-
ance length scale function and a few of its derivatives for various values of xi. The
hyperparameters used in these figures are similar to those encountered for L-mode
density profiles: σf = 1, ℓ1 = 1, ℓ2 = 0.5, ℓw = 0.2, x0 = 1.0. In each subfigure,
xi is indicated with the vertical blue line and xj is given on the horizontal axis. As
expected, the covariance between points drops noticeably across the pedestal. This
figure was produced using gibbs_demo.py.

https://github.com/markchil/thesiscode/blob/master/gibbs_demo.py
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Gaussian basis function. While Gibbs [395] used a fixed grid of many basis functions
with the same width, it was found that this often produced unphysical oscillations
in the gradient. Instead, a small number of Gaussians was used and the centers μi
and widths σi were treated as free hyperparameters along with ℓ0 and the weights
βi. This allows the inference to put changes in length scale where the data demand
them while still keeping the curve smooth and with constant length scale elsewhere.

b.4.1.2.2 B-splines Another option is to use B-spline basis functions [321, 322].
These functions havemathematical properties which enable them to represent a wide
variety of functions with a minimum number of parameters. The basis functions
are piecewise polynomials of degree2 d, and are represented using a nondecreasing
set of nt knots ti. In practice, d copies of the edge knots are appended at each end of
the domain. So, for d = 3 (a cubic B-spline), the set of knots would end up as

t = {t1, t1, t1, t1, t2, … , tnt−1, tnt , tnt , tnt , tnt}, (b.82)

for a total of nt + 2d knots. The basis functions are defined recursively [321]:

Bi,0(x|t) =
{

1, ti ≤ x < ti+1
0, otherwise

(b.83)

Bi,d(x|t) =
x − ti
ti+d − ti

Bi,d−1(x|t) +
ti+d+1 − x
ti+d+1 − ti+1

Bi+1,d−1(x|t), (b.84)

where Bi,d(x|t) is the ith B-spline basis function of polynomial degree d with knot
set t. For a given set of nt interior knots, this then defines nt + d − 1 non-zero basis
functions. The derivatives of the basis functions are [321]

dBi,d(x|t)
dx

= d (
Bi,d−1(x|t)
ti+d − ti

−
Bi+1,d−1(x|t)
ti+d+1 − ti+1 ) = Mi,d−1(x|t) − Mi+1,d−1(x|t),

(b.85)

where

Mi,d(x|t) = d + 1
ti+d+1 − ti

Bi,d(x|t) (b.86)

is the ith M-spline basis function of polynomial degree d [321, 489, 490], an alternate
normalization of the B-spline basis functions. The length scale is then represented

2. Note that the literature on splines commonly defines B-splines in terms of “order” k = d + 1. This is
very unfortunate notation as it masks the polynomial degree of the spline, and so the clearer but less
conventional notation in terms of the polynomial degree d is used here.
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as a weighted sum

ℓ(x) =
nt+d−1

∑
i=1

CiBi,d(x|t). (b.87)

Both the knot locations ti and the spline coefficients Ci can be treated as free param-
eters.

b.4.2 Warped inputs

As noted in [297] and implemented in [395, 396, 491], another way of introducing
non-stationarity to a Gaussian process is to pass the inputs x through some non-
linear warping function w = f (x) before fitting the Gaussian process. In general, w
and x could have different dimensions and f (x) could be many-to-one. But, for the
tokamak profile fitting task, the most useful warping function maps single inputs
x to single outputs w. Furthermore, the mapping function should3 be monotonic
and one-to-one so that there is a unique w for every x. A useful way of thinking
about this procedure is that the warping function stretches the input space such that
a function which was originally nonstationary becomes stationary.

It is important to distinguish between a Gaussian process with warped inputs
and a warped Gaussian process as described in [492]: a so-called “warped Gaussian
process” is the result of passing the output of a Gaussian process through a non-linear
function, which may have parameters which are inferred from the data. Warped
Gaussian processes are not supported by gptools at present.

The implementation in gptools uses a warping function f ∶ RD → RD where
each element of w = f (x) can be expressed as wd = fd(xd), where fd ∶ R → R. In
other words, w is the same dimension as x and each component of w only depends
on the corresponding component of x. Let wi = f (xi), wj = f (xj), yi = y(f (xi)) and

3. An otherwise stationary covariance kernel can be imbued with useful properties such as periodicity
by relaxing these restrictions, see [297] for details.
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yj = y(f (xj)). Then,

cov[yi, yj] = k(wi,wj) (b.88)

cov
[

∂yi
∂xdi

, yj]
=

∂k(wi,wj)
∂xdi

=
∂k(wi,wj)

∂wdi

∂wdi

∂xdi
(b.89)

cov
[
yi,

∂yj
∂xdj ]

=
∂k(wi,wj)

∂xdj
=

∂k(wi,wj)
∂wdj

∂wdj

∂xdj
(b.90)

cov
[

∂yi
∂xdi

,
∂yj
∂xdj ]

=
∂2k(wi,wj)

∂xdi∂xdj
=

∂2k(wi,wj)
∂wdi∂wdj

∂wdi

∂xdi

∂wdj

∂xdj
. (b.91)

This procedure can be extended to arbitrary transformations w(x) and arbitrary
orders of differentiation through appropriate application of the chain rule. The
final extension supported by gptools is nested warpings: wd = gd(fd(xd)). Letting
ud = fd(xd), the warping function derivatives are found through application of the
chain rule:

∂wd

∂xd
=

∂wd

∂ud

∂ud
∂xd

=
∂gd(ud)

∂ud

∂fd(xd)
∂xd

. (b.92)

This can be extended to arbitrary depth of nesting and arbitrary order of differentia-
tion through appropriate application of the chain rule.

In order to put covariance kernels with warped inputs and covariance kernels
with spatially-varying length scales on the same footing, note the following identity
given in [395]:

ℓ(x) = 1
df (x)/dx

. (b.93)

Therefore, a stationary covariance kernel with input warping function f (x) can be
thought of as a nonstationary covariance kernel with spatially varying covariance
length scale ℓ(x). Solving for f (x) gives

f (x) = ∫
x

L

1
ℓ(u)

du, (b.94)

whereL ≤ x is the lower bound of the domain. Therefore, a nonstationary covariance
kernel with spatially varying covariance length scale ℓ(x) can be thought of as a
stationary covariance kernel with nonlinear input warping function f (x).
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b.4.2.1 Warping to the unit hypercube

It is often convenient to employ a warping of the form f ∶ RD → [0, 1]D such that
all of the warped variables lie within the unit hypercube. This is a prerequisite to use
the beta warping discussed in section b.4.2.2, for example. The linear warping

w = f (x) = x − a
b − a

(b.95)

∂f (x)
∂x

= 1
b − a

, (b.96)

accomplishes this as long as a ≤ x ≤ b for all points of interest. Here, x refers to the
specific xd in x which is to be warped.

b.4.2.2 Beta-cdf warping

Snoek et al. [396] advocates for the use of the cumulative distribution function (cdf)
of the beta distribution as the warping function. This function is the regularized
incomplete beta integral [294, 493]:

f (x) = I(x; α, β) =
Γ(α + β)
Γ(α)Γ(β) ∫

x

0
tα−1(1 − t)β−1 dt, (b.97)

where α > 0, β > 0 are the shape parameters of the beta distribution and 0 ≤ x ≤ 1.
The derivatives of this function are [468, 494, 495]:

dnI(x; α, β)
dxn

= −(1 − x)β−1xα−n

B(α, β)

n−1

∑
k=0

(−1)n−k
(
n − 1
k )(1 − β)k(1 − α)n−k−1 (

x
1 − x)

k

(b.98)
dI(x; α, β)

dx
= (1 − x)β−1xα−1

B(α, β)
, (b.99)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the beta function [294, 496]. Note that the
slope diverges at x = 0 if α < 1 and at x = 1 if β < 1. This causes a problem with
handling the slope at the magnetic axis and in the scrape-off layer when fitting a
tokamak profile. To get around this in practice, the data are mapped to lie just inside
the unit hypercube using the linear warping discussed in section b.4.2.1.

Any reasonable distribution’s cdf will be an acceptable monotonic and one-to-
one warping function, and in fact Gibbs [395] uses a sum of shifted Gaussian cdfs
to construct a warping function. The beta distribution’s cdf has the advantage that
it can acquire many different shapes by varying the two parameters α and β. Specif-
ically, if α = β = 1, this function just maps x to itself. If α > 1, the slope gets
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shallower near x = 0 and large changes in x produce only small changes in w: the
space is compressed around x = 0. If α < 1, the slope gets steeper near x = 0 and
small changes in x produce large changes in w: the space is expanded around x = 0.
The same reasoning holds for the behavior near x = 1 as β is varied. Therefore, to
fit a tokamak profile, having α ≳ 1 and β < 1 will compress the core and stretch the
edge out to produce the desired non-stationarity.

b.4.2.3 I-spline warping

When beta warping is insufficient, the I-splines [489, 490, 497]:

Ii,d(x|t) = ∫
x

L
Mi,d−1(u|t) du (b.100)

w(x) =
nt+k−2

∑
i=1

CiIi,k(x|t), (b.101)

where Mi,k(x|t) are the M-spline basis functions given in equation (b.86) and L is the
lower limit of the domain, offer amore flexible alternative. Because theM-spline basis
functions are always positive, the I-spline basis functions will always be monotonic.
So, the resulting warping function will always be monotonic if Ci ≥ 0. Through
appropriate selection of the knot grid, this approach does not require that the data
be mapped to the unit hypercube before applying the warping. The derivative of the
I-spline basis functions are obviously

dIi,d(x|t)
dx

= Mi,d−1(x|t). (b.102)

b.5 Transformations of covariance kernels

Since any symmetric, positive definite function is a valid covariance kernel, any
transformation of existing covariance kernels which preserves symmetric positive
definiteness will also be a valid covariance kernel [297]. Useful illustrations of some
transformations are provided in [498, 499].

b.5.1 Sums of covariance kernels

The sum of two covariance kernels is a valid covariance kernel. This construction
is useful to represent data which have multiple length scales. A model could have
a covariance kernel with a long covariance length scale to capture the macroscopic
behavior plus a short length scale to represent local variations or noise. In fact,
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the rq covariance kernel discussed in section b.2 is an infinite sum (i.e., integral)
over se covariance kernels with different covariance length scales. Sum kernels are
particularly simple to include in our framework:

ksum(xi, xj) = k1(xi, xj) + k2(xi, xj) (b.103)
∂

∂xid
ksum(xi, xj) = ∂

∂xid
k1(xi, xj) + ∂

∂xid
k2(xi, xj), (b.104)

and so on for higher-order and mixed partial derivatives.

b.5.2 Products of covariance kernels

The product of two covariance kernels is a valid covariance kernel. This is a useful
construction for combining covariance kernels which operate on different dimen-
sions.The se covariance kernel can in fact be seen as a product of 1d se covariance
kernels, one for each dimension. As a more interesting example, the product of
a Gibbs covariance kernel operating on τ1 = ρi − ρj and an se covariance kernel
operating on τ2 = ti − tj would be useful for performing time-dependent fits of
(sawtooth-free) profile data with a strong pedestal. To utilize covariance kernels of
the general form

kprod(xi, xj) = k1(xi, xj)k2(xi, xj) (b.105)

in our framework requires some care with respect to differentiation. Note that the
Leibniz rule of equation (b.45) generalizes to partial derivatives as

∂n

∏n
i=1 ∂x[i]

(k1(xi, xj)k2(xi, xj)) = ∑
S∈𝒫({1,…,n})

∂|S|k1
∏i∈S ∂x[i]

∂n−|S|k2
∏i∉S ∂x[i]

, (b.106)

where the notation for indicating which variable to differentiate with respect to is
the same as was used in equation (b.30), 𝒫({1, … , n}) is the power set (i.e., the set
of all possible subsets) of the set of variables to differentiate with respect to, S is one
of the subsets in 𝒫({1, … , n}) and |S| is the number of elements in S.



c
Supporting material from
chapter 3: Inference of
experimental impurity transport
coefficient profiles

c.1 Relative contributions of diffusion, convection and
atomic physics

Consider the spatial and temporal evolution of He-like calcium as governed by the
impurity continuity equation equation (3.1) with the transport coefficients given in
equation (3.14). Figure c.1 gives the contributions of diffusion and convection to
the flux. Diffusion dominates the behavior in the outer portion of the plasma, but
convection plays a role in the core region. The total impurity ion flux exhibits similar
behavior.

Figure c.2 gives the contributions of the transport flux −1/rvol ⋅ ∂(rvolΓZ,i,rvol)/∂rvol
and ionization/recombination source/sink term QZ,i to the time derivative of the He-
like calcium density ∂nZ,i/∂t. The atomic physics term dominates the behavior early
in the injection, and is of comparable magnitude to the transport term throughout.
This complicates use of the flux-gradient approach to reconstruct the transport
coefficients from measurements of only He-like calcium.
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Figure c.1: Contributions from diffusion and convection to the flux of He-like
calcium. All plots have the same color scale. This figure was produced using
analyze_rates.py.

https://github.com/markchil/thesiscode/blob/master/analyze_rates.py
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Figure c.2: Contributions from transport and atomic physics to the change in
the He-like calcium density. All plots have the same color scale. This figure was
produced using analyze_rates.py.

https://github.com/markchil/thesiscode/blob/master/analyze_rates.py
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c.2 Discrepancies between linearized and exact figures of
merit

Figure c.3 through figure c.5 show the discrepancy between the linearizations and
the actual strahl results for the figures of merit used in the linearized Bayesian
analysis given in section 3.4.2.

c.3 Posterior distributions for complex synthetic data

Figure c.6 through figure c.13 show posterior distributions for the coefficients of the
transport coefficient profiles fit to the synthetic data in section 3.6.7. The posterior
distribution for the seven coefficient per profile case is given in figure 3.59.

0.84 0.90 0.96 1.02 1.08 1.14 1.20
D [m2/s]

−12.0
−11.5
−11.0
−10.5
−10.0
−9.5
−9.0
−8.5
−8.0

V
[m

/s
]

Percent error in linearization of τimp

−16
−12
−8
−4
0
4
8
12
16

10
0%

⋅(
̂ τ im

p
−
τ im

p)
/τ

im
p

Figure c.3: Discrepancy between the actual τimp obtained from the strahl outputs
and the linearized ̂τimp. The green solid contour corresponds to the value of τimp
at D = 1m2/s, V = −10m/s and the black dotted contours represent ±10% around
this value. This figure was produced using make_bayes_time_res_plot.py.

https://github.com/markchil/thesiscode/blob/master/make_bayes_time_res_plot.py
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and the linearized ̂tp. The green solid contour corresponds to the value of tr at
D = 1m2/s, V = −10m/s and the black dotted contours represent ±10% around
this value. This figure was produced using make_bayes_time_res_plot.py.
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at D = 1m2/s, V = −10m/s and the black dotted contours represent ±10% around
this value. This figure was produced using make_bayes_time_res_plot.py.
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Figure c.6: Posterior distribution for D and V for the one coefficient per profile
case. This figure was produced using settings_1101014006_22_NTH_as_true.py
and post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py
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Figure c.7: Posterior distribution for D and V for the two coefficient per profile
case. This figure was produced using settings_1101014006_22_NTH_as_true.py
and post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py
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Figure c.8: Posterior distribution for D and V for the three coefficient per profile
case. This figure was produced using settings_1101014006_22_NTH_as_true.py
and post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py
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Figure c.9: Posterior distribution for D and V for the four coefficient per profile
case. This figure was produced using settings_1101014006_22_NTH_as_true.py
and post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py


c.3. Posterior distributions for complex synthetic data 377

0.75
1.00

D
2

4.0
4.8
5.6

D
3

0.12
0.16

D
4

0.40
0.48

D
5

1
2
3

V
1

1.5
3.0V

2

−20
−15

V
3

5.6
6.4

V
4

0.
2

0.
4

D1

−10
−5

V
5

0.
75

1.
00

D2

4.
0

4.
8

5.
6

D3

0.
12

0.
16

D4

0.
40

0.
48

D5

1 2 3

V1

1.
5

3.
0

V2

−
20

−
15

V3

5.
6

6.
4

V4
−
10 −
5

V5

0
50
00

10
00
0

step

0
50
00

10
00
0

step

0
50
00

10
00
0

step

0
50
00

10
00
0

step

0
50
00

10
00
0

step

0
50
00

10
00
0

step

0
50
00

10
00
0

step

0
50
00

10
00
0

step

0
50
00

10
00
0

step

0
50
00

10
00
0

step

Posterior distribution of D and V , 5+5

Figure c.10: Posterior distribution for D and V for the five co-
efficient per profile case with linearly-spaced knots. This figure
was produced using settings_1101014006_22_NTH_as_true.py and
post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py
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Figure c.11: Posterior distribution for D and V for the five coef-
ficient per profile case with near-optimal knots. This figure was
produced using settings_1101014006_22_NTH_as_true.py and
post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py
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Figure c.12: Posterior distribution for D and V for the five coef-
ficient per profile case with purposefully bad knots. This figure
was produced using settings_1101014006_22_NTH_as_true.py and
post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py
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Figure c.13: Posterior distribution for D and V for the six coefficient per profile
case. This figure was produced using settings_1101014006_22_NTH_as_true.py
and post_process_NTH_as_true_MCMC.py.

https://github.com/markchil/thesiscode/blob/master/settings_1101014006_22_NTH_as_true.py
https://github.com/markchil/thesiscode/blob/master/post_process_NTH_as_true_MCMC.py


Software for data analysis
A key contribution of this thesis was the development of extensive open-source code
for data analysis, both inside and outside the domain of plasma physics. Because
the user documentation and source code for all of the software described in the
following chapters are available online, the focus is primarily on the implementation
details which are not necessarily of interest to an end-user, but which constitute a
key part of this thesis work. The following appendices should be viewed as a bridge
between the math and physics discussed in this thesis and the user-facing interface
described in the documentation.

All of the software presented here was implemented in the Python programming
language. A list of the software configuration in use at the time this thesis was written
is given in table h.1. While some illustrative code snippets are given, the primary
reference on how to use these codes are the scripts given at https://github.com/
markchil/thesiscode, which are the actual data analysis scripts used for this thesis.

When what a code is doing is describedmathematically, the equations will follow
the mathematical convention of starting the indexing of elements in vectors and
matrices at one and not zero as is used in Python. Ranges of elements may be
indicated with a “slice index” where υ2∶5 indicates the second through fifth element
of vector υ, inclusive.

https://github.com/markchil/thesiscode
https://github.com/markchil/thesiscode


d
eqtools: an open-source Python
package for handling magnetic
equilibrium data

d.1 Package overview

eqtools is a Python package which provides classes for working with magnetic equi-
librium reconstruction data from multiple tokamaks, including support for all of the
standard flux surface coordinate systems. The software was developed in collabora-
tion with I. Faust and J. Walk. E. Davis helped with the diii-d implementation and
N. Vianello contributed the tcv implementation. eqtools is described in [500], the
source code is available in [501] and the documentation is available in [502]. The
objective of eqtools is to provide both simple, unified access to data related to the
magnetic equilibrium reconstruction and a comprehensive set of coordinate map-
ping routines. The idea is to provide a set of tools which can easily be made to work
on data from any tokamak using any magnetic reconstruction tool. By providing
a unified interface, analysis programs written using eqtools can be made to work
at a variety of facilities with minimal modification. An example of fetching the q
profile with the standard MDSplus routines is given in code listing d.1 and example
of the same operation using eqtools is given in code listing d.2. The example using
MDSplus directly requires the user to remember the site-specific path to the node,
while the eqtools example uses clear, easy to understand (and remember) names.
Furthermore, the path to the node will almost certainly be different at a different
facility, but themeans of interacting with eqtoolswill be the same. So, whenmoving
a code from one facility to another, instead of having to change all of the paths in an
analysis script (or possibly completely change away from an MDSplus-based system),
the user will simply have to change which subclass of Equilibrium is used.
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Code Listing d.1: Fetching the q profile with MDSplus directly
1 import MDSplus

2 tree = MDSplus.Tree('ANALYSIS', 1101014006)

3 n_q = tree.getNode(r'\analysis::top.efit.results.g_eqdsk:qpsi')

4 q = n_q.data()

5 t = n_q.dim_of().data()

Code Listing d.2: Fetching the q profile with eqtools

1 import eqtools

2 e = eqtools.CModEFITTree(1101014006)

3 q = e.getQProfile()

4 t = e.getTimeBase()

An outline of the package is given in figure d.1. The core class is the Equilibrium
abstract class which contains all of the coordinate mapping routines and abstract
methods for all of the getter methods. Implementing subclasses are responsible for
implementing getter methods which put the data into the format that the mapping
routines require. The EFITTree abstract class implements most of these methods
for facilities using the efit code [503]. Classes which implement EFITTree such as
CModEFITTree and NSTXEFITTree then require very little additional code, thereby
allowing easy porting of eqtools to any facility using MDSplus and efit.

A note about coding conventions in eqtools

Because of its collaborative development, eqtools uses slightly different coding
conventions from gptools and profiletools. In eqtools, class names are still
indicated in upper camel case (CModEFITTree), but public method and attribute
names use lower camel case (getQProfile()). Instead of providing direct access
to the equilibrium data, eqtools provides getter methods such as getQProfile()
which return a copy of the internal (private1) array. The idea is to prevent novice
users from accidentally modifying the data in-place and hence causing the data to
become inconsistent. This adds some overhead to copy the array each time, however.
The mix-in PropertyAccessMixin provides property-like access to all of the getter

1. Python does not provide direct support for public and private attributes and methods. Instead, the
standard Python convention of putting a leading underscore on the names of attributes and methods
which are not meant for external use is employed. For instance, the internal variable holding the q
profile is _qpsi.
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Equilibrium
• provides abstract 
methods for getters
• provides coordinate 
mapping routines

EFITTree
provides abstract 
handling for EFIT 
results in MDSplus 
trees

other codes, data 
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CModEFITTree
implementation for 
standard C-Mod 
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standard NSTX 
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files from EFIT code

filewriter
produces g-file from 
time slice in 
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p-file profile data 
used by EFIT

Figure d.1: Structure of the eqtools package. This figure was originally published
in [500] and is a revised version of a figure originally created by J. Walk.

methods, but does not save any of the overhead from copying the arrays.

d.2 Coordinate systems supported and the coordinate
mapping routines

eqtools supports transformations between a wide variety of coordinates in common
use including real-space (R,Z) coordinates, mapped outboard midplane major ra-
dius Rmid, normalized minor radius r/a, unnormalized poloidal flux2 ψ, normalized
poloidal flux ψn, normalized toroidal flux φn, normalized flux surface volume Vn
and the square roots of these quantities. The original routines were developed by
S. Wolfe and were ported to Python as part of this thesis.

The most important transformation maps a given point (R,Z) at a given time t
to the poloidal flux ψ at that location as computed with the magnetic reconstruction
code. The default implementation uses a nearest-neighbor interpolation in time: the
code first retrieves the flux reconstruction at the time closest to t, then a bivariate
interpolating spline [293, 311] is used to map from (R,Z) to ψ. The bivariate spline
coefficients from each time are stored in memory as they are computed in order to

2. What is used is actually the (Stokes) stream functionψ = ψp/(2π), with units ofWb/rad. See section d.3.
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speed up subsequent calculations at that time slice. A more advanced method using
a tricubic interpolating spline to interpolate smoothly in space and time is described
in [500].

Once the coordinate has been mapped to ψ, subsequent calculations are simpler.
Normalized poloidal flux is defined as

ψn =
ψ − ψ0

ψa − ψ0
, (d.1)

where ψ0 is the poloidal flux at the magnetic axis and ψa is the poloidal flux at the
last closed flux surface (lcfs). To ensure self-consistency, the default behavior is
to use nearest-neighbor interpolation to get the values of ψ0 and ψa at the desired
time. When a tricubic spline is used to map from (R,Z) to ψ a cubic spline is used
to interpolate ψ0 and ψa in time.

Normalized toroidal flux is defined in terms of normalized poloidal flux as

φ(ψ) = ∫
ψ

ψ0

q(ψ′) dψ′

φn =
φ
φa

,
(d.2)

where q(ψ) = dφ/dψ is the safety factor profile (typically computed when efit is
run) and φa = ∫ψa

ψ0
q(ψ′) dψ′ is the toroidal flux at the last closed flux surface. The

integral in equation (d.2) is numerically evaluated using the trapezoid rule.
The normalized flux surface volume is defined as

Vn(ψ) =
V(ψ)
Va

, (d.3)

where V(ψ) is the volume enclosed by the (closed) flux surface with flux ψ and Va is
the volume enclosed by the last closed flux surface. In the case of Alcator C-Mod, the
flux surface volume V(ψ) is computed automatically when efit is run, but it would
be straightforward to override the getFluxVol() method of the Equilibrium class
to compute this from the ψ(R,Z) grid when this quantity is not already available in
the tree.

Mapping from ψn to Rmid is accomplished by forming a dense radial grid of R
points that go from the magnetic axis to the edge of the grid the flux is reconstructed
on, finding the vertical location of the magnetic axis at the desired time(s) (called
Z0), then converting the resulting (R,Z0) points to ψn with the routines described
above. This one-to-one mapping between Rmid and ψn is then interpolated to give
the desired conversion from ψn to Rmid.
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By default, r/a is defined in terms of Rmid as

r/a =
Rmid − R0

Ra − R0
, (d.4)

where R0 is the major radius of the magnetic axis and Ra is the outboard midplane
major radius of the last closed flux surface. Since other definitions of r/a are preferred
when the Shafranov shift is high, the specific definition of r/a can be changed sim-
ply by overriding the methods _rmid2roa() and _roa2rmid() in the Equilibrium
class. Variants on these basic routines are then used to map between other pairs of
coordinates.

d.3 Computing magnetic fields and current densities

d.3.1 The magnetic field

The (Stokes) stream function ψ for the magnetic field is directly proportional to the
(unnormalized) poloidal flux: ψp = 2πψ. The poloidal field components are then
given by [504]:

BR = − 1
R

∂ψ
∂Z

, BZ = 1
R

∂ψ
∂R

. (d.5)

Because ψ is interpolated with a cubic bivariate spline, computing the derivatives
necessary to compute the poloidal field is trivial. The toroidal component of the
magnetic field is found from the flux function F = RBφ. The sign convention for
Bφ is right-handed such that the toroidal field of an Alcator C-Mod “forward-field”
discharge (clockwise when viewed from above) is negative. Unfortunately, efit
only stores F inside the lcfs. To compute the toroidal field outside of the lcfs, the
vacuum component of the toroidal field at the magnetic axis,3 Bφ,vac,0 is used:

Bφ,vac = Bφ,vac,0
R0

R
, (d.6)

where R0 is the major radius of the magnetic axis. This matches the toroidal field in
the plasma quite well; see figure d.2.

d.3.2 The current density

The current density is

j = 1
μ0 (

1
R

dF
dψ

𝛁ψ × φ̂ − 1
R
Δ∗ψφ̂) , (d.7)

3. This is stored in the efit a-file as “btaxv.”



d.3. Computing magnetic fields and current densities 387

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
R [m]

3

4

5

6

7

8

9

10

B φ
[T

]

Comparison of vacuum to total toroidal field

vacuum
total
plasma

Figure d.2: Vacuum (blue dashed) and total (green solid) toroidal magnetic field at
midplane as a function of major radius for t = 1 s in Alcator C-Mod shot 1120907032,
the reversed-field I-mode used for the profile analysis incorporating tci data in
section 2.5.2. The shaded region indicates the radial extent of the plasma; outside
of this region the simple 1/R dependence given in equation (d.6) is used. The joins
to the paramagnetic region inside the lcfs are quite smooth, which verifies the
accuracy of this assumption in the scrape-off layer. This figure was produced using
EFIT_Btor.py.

where φ̂ is the unit vector in the toroidal direction and

Δ∗ψ = R2𝛁 ⋅ (
𝛁ψ
R2 ) = R ∂

∂R (
1
R

∂ψ
∂R) +

∂2ψ
∂Z2 (d.8)

is the elliptic operator. Using the Grad-Shafranov equation,

Δ∗ψ = −μ0R2 dp
dψ

− F dF
dψ

, (d.9)

so the toroidal current density is

jφ = Rp′ + FF′

μ0R
, (d.10)

https://github.com/markchil/thesiscode/blob/master/EFIT_Btor.py
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where p′ = dp/dψ and F′ = dF/dψ. Expanding the cross product in equation (d.7)
gives the poloidal components of the current density:

jR = − 1
μ0R

F′ ∂ψ
∂Z

=
F′BR
μ0

(d.11)

jZ = 1
μ0R

F′ ∂ψ
∂R

=
F′BZ
μ0

. (d.12)

Note that this is equivalent to

μ0jR = − 1
R

∂F
∂Z

, μ0jZ = 1
R

∂F
∂R

, (d.13)

which means that F is the Stokes stream function for the axisymmetric vector field
j. In any case, efit computes the quantities p′ and FF′ inside of the lcfs, so the
current density inside the plasma can be obtained directly from these expressions.

d.3.3 Tracing field lines

Consider x to be the path of a field line of vector field u. Since the situation is
axisymmetric, a field line can simply be parameterized by the toroidal angle, φ. By
definition, the field line is everywhere parallel to the flux surface. Therefore, the field
lines are defined by

dx
dφ

× u = 0. (d.14)

Note that a position vector can be expressed as

x = RR̂ + ZẐ. (d.15)

The derivative of R̂ with respect to φ is [347, 505]:

∂R̂
∂φ

= ̂φ. (d.16)

Therefore,

dx
dφ

= dR
dφ

R̂ + R ̂φ + dZ
dφ

Ẑ, (d.17)

and the field line is defined by

(RuZ − dZ
dφ

uφ) R̂ + (
dZ
dφ

uR − dR
dφ

uZ) ̂φ + (
dR
dφ

uφ − RuR) Ẑ = 0. (d.18)
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One of these equations is redundant, so the field line is governed by the system of
equations

dR
dφ

=
uR
uφ

R, dZ
dφ

=
uZ
uφ

R. (d.19)

This system is solved numerically using the (4)5 Dormand-Prince integrator pro-
vided in SciPy [293, 506]. An example of magnetic field lines traced with this tech-
nique is given in figure d.3 and an example of current field lines traced with this
technique is given in figure d.4.

d.4 Verification and benchmarking

eqtools has been verified against the existing, thoroughly-tested idl routines which
are currently in use for handling coordinate mapping at Alcator C-Mod. Figure d.5
shows the discrepancy between the idl routines and eqtools for the conversion
of (R,Z) to ψ. The differences are small (of order 10−7 Wb/rad, compared to a
signal of order ±0.5Wb/rad), and are consistent with the fact that Python used
double precision whereas idl used single precision for the test.4 Timing tests were
conducted by converting a 66×66 element (R,Z) grid (double the density of the grid
efit provides the flux on) into each of the coordinates supported. This conversion
was performed at 180 time slices (double the temporal resolution output by efit)
and nearest-neighbor temporal interpolation was used. The test was run both with
all points being processed at once (denoted “all” in table d.1) and with the routine
being called inside a loop over all time points (denoted “loop” in table d.1). The
conversion was performed twice with the same Equilibrium object in eqtools in
order to assess the time savings from storing the spline coefficients. The idl routines
(with the exception of the conversion to Rmid) support reuse of the spline coefficients
from a single time slice, so a second run of the idl code with the stored spline coef-
ficients was performed when looping over time slices. The test was repeated 100
times, and the mean execution time to convert the (R,Z) grid for all time points is
given in table d.1.

In all cases eqtools is faster than the idl routines. Furthermore, the test results
highlight the additional flexibility eqtools provides users. For the most efficient
case where all of the points are passed at once, eqtools is only slightly faster for the
simple conversions of (R,Z) to ψ and ψn. But, for the more complicated conversions

4. The data are retrieved from MDSplus in single precision but must be cast to double precision for the
Python spline routines to work properly. While idl can work in double precision, it defaults to single
precision when given single precision input data.
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Figure d.3: Magnetic field lines for Alcator C-Mod shot 1120907032, evaluated at
t = 1 s. Six lines were launched at the midplane at φ = 0 at locations uniformly
spaced inψ over 0.05 ≤ ψn ≤ 0.95. The lines were traced for 10 poloidal revolutions
(i.e., 10q toroidal revolutions). Because the locations used are not rational surfaces
the lines do not close on themselves in a finite number of orbits. The lines are drawn
with 25% transparency and the color of the line gives the magnitude of the magnetic
field – the 1/R dependence can clearly be seen. While arrows are not shown on the
field lines, note that this is a “reverse field” discharge, so the field lines are directed
counterclockwise. This figure was produced using EFIT_field_lines.py.

https://github.com/markchil/thesiscode/blob/master/EFIT_field_lines.py
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Figure d.4: Current density field lines for Alcator C-Mod shot 1120907032, eval-
uated at t = 1 s. Six lines were launched at the midplane at φ = 0 at locations
spaced uniformly in F. The lines were traced for the same number of revolutions
as in figure d.3, and again do not close on themselves in a finite number of orbits
because they were not launched on rational surfaces. The lines are again drawn
with 25% transparency and the color of the line gives the magnitude of the current
density – the concentration of the current in the core of the plasma can clearly be
seen. While arrows are not shown on the field lines, note that this is a “reverse
field” discharge, so the plasma current (and hence current density field lines) is
directed counterclockwise. The fact that the poloidal current density curls in the
same direction as the poloidal magnetic field is consistent with the fact that this
discharge is paramagnetic, as shown in figure d.2. This figure was produced using
EFIT_field_lines.py.

https://github.com/markchil/thesiscode/blob/master/EFIT_field_lines.py
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Figure d.5: Absolute difference between calculations of a mapping between the
(R,Z) grid and poloidal flux ψ for eqtools and the current idl implementation
of the mapping routine for the analysis efit of Alcator C-Mod shot 1120914027.
Relative differences of order 10−7 Wb/rad are typical (the value of ψ is in the range
±0.5Wb/rad), and are consistent with the different float precisions used. This figure
is an updated version of one which originally appeared in [500]. This figure was
produced using make_efit_compare_plot.py.

to φn, Vn and Rmid, eqtools is anywhere from 1.5 to 1.9 times faster than the idl
routines. Furthermore, the caching of intermediate results in eqtools accelerates
the second call to a routine by as much as a factor of five (for the conversion to
Rmid). Where eqtools stands in stark contrast to the idl routines is the case where
the conversions are evaluated in a loop. While this case is not something which
would be used directly as both codes support the evaluation of multiple time points
at once, it is indicative of the performance to be expected should a user write a script
which needs to evaluate each time point on a different grid, or otherwise needs the
flexibility to split an operation up into steps applied to each time point. For this
case, eqtools is anywhere from five to twenty times faster than the idl routines.
This is believed to be a result of the large overhead associated with function calls in

https://github.com/markchil/thesiscode/blob/master/make_efit_compare_plot.py
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Table d.1: Time to convert all 180 time slices in milliseconds. “All” refers to passing
all points to the routine at once, whereas “loop” refers to calling the routine in a
loop over time points. “First” refers to the first call to the routine when data are
collected from the server and spline coefficients are computed, “second” refers to
the second call once the data and spline coefficients have been cached.

Conversion idl eqtools

all loop all loop

first second first second first second first second

(R,Z) → ψ 149 – 3147 3052 134 116 179 161
(R,Z) → ψn 163 – 4024 3880 137 119 184 165
(R,Z) → φn 473 – 5307 5196 254 165 303 215
(R,Z) → Vn 468 – 5326 5220 253 164 302 215
(R,Z) → Rmid 1400 – 5328 – 942 187 993 238

the idl language. These test results highlight the improved performance and extra
programming flexibility provided by eqtools.
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gptools: an open-source Python
package for general-purpose
Gaussian process regression

e.1 Package overview

gptools is a Python package which provides support for multivariate Gaussian pro-
cess regression (gpr) with arbitrary derivative constraints and predictions. The
source code is available in [306] and the user documentation is available in [307].
While there are several packages which support gpr available in Python [507–513]
as well as many other programming languages [487, 488, 514–523], none of those
available at the time that development of gptools started supported derivative con-
straints or predictions,1 nor did any of the options available have much support for
nonstationary data. Given that both of these capabilities are critical for the han-
dling of tokamak profile data, it was necessary to implement a package to support
Gaussian processes with derivative information from scratch. It was decided that
the package should be as flexible as possible, including support for data of arbitrary
dimension and both observations and predictions of derivatives of arbitrary order.
The basic implementation follows [297], but with extensive additional development
as described in chapter 2 and appendix b.

The core classes are GaussianProcess which represents the Gaussian process
itself (including storing all the data and making predictions) and Kernel which
represents a covariance kernel. Other classes for more advanced uses are described
below and a diagram of the basic interactions between classes is given in figure e.1.

1. GaPP [513, 524] is now available and also provides support for Gaussian process regression with
derivative constraints and predictions, but not for nonstationary covariance kernels.
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Code Listing e.1: Basic gptools example with univariate data. The use of the
param_bounds keyword on line 8 when creating the Kernel instance sets a uniform
prior distribution for σf and ℓ.

1 # Import the package:

2 import gptools

3 # Data are assumed to be in 1D arrays X and y already.

4 # The uncertainty in y is in the 1D array err_y.

5 # The points you want to evaluate the curve at are in the 1D array Xstar.

6 # Create an SE covariance kernel:

7 k = gptools.SquaredExponentialKernel(

8 param_bounds=[(0, 2 * (max(y) - min(y))), (0, 2 * (max(X) - min(X)))]

9 )

10 # Create a Gaussian process with the SE covariance kernel but no data:

11 gp = gptools.GaussianProcess(k)

12 # Add the data :

13 gp.add_data(X, y, err_y=err_y)

14 # Add an exact zero-slope constraint at x=0:

15 gp.add_data(0, 0, n=0)

16 # Find the MAP estimate for the hyperparameters:

17 gp.optimize_hyperparameters()

18 # Make a prediction, including uncertainty estimate (standard deviation):

19 ystar, err_ystar = gp.predict(Xstar)

A basic example of using gptools is given in code listing e.1.
The gptools package is organized into the following submodules and subpack-

ages:

gaussian_process Contains the core GaussianProcess class along with several
helper classes.

kernel Subpackage with various covariance kernels.

core Provides the core Kernel class along with several helper classes.

squared_exponential Provides the squared exponential (se) covariance ker-
nel.

rational_quadratic Provides the rational quadratic (rq) covariance kernel.

matern Provides the Matérn covariance kernel.

noise Provides covariance kernels to model uncorrelated noise.

gibbs Provides the nonstationary Gibbs covariance kernel and various co-
variance length scale functions.
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hyperprior
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GaussianProcess

Kernel MeanFunction
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Figure e.1: Basic association structure of gptools. In diagrams such as this, classes
are indicated with three-compartment boxes (see figure e.2 for an explanation of
class diagrams) and unidirectional associations are indicated with a solid line with
a “v”-shaped arrowhead pointing towards the class which is known. The arrow is
labeled with the multiplicity of the association and the name(s) of the attributes
in the containing class. So, the meaning of this diagram is that GaussianProcess
contains two instances of Kernel (k and noise_k, see figure e.2) and zero or one
instances of MeanFunction. Kernel and MeanFunction each contain an instance
of JointPrior. Any given Kernel, MeanFunction or JointPrior instance has no
record of what it is contained in, however. Note that Kernel, MeanFunction and
JointPrior are all abstract classes.

warping Provides the WarpedKernel class and various input warping func-
tions.

mean Provides the MeanFunction class and support for non-zero mean functions.

utils Provides helper classes and functions, including the JointPrior class used
to construct prior distributions for hyperparameters.

gp_utils Provides helper classes and functionswhich operate on GaussianProcess
instances, and hence had to be in a separate module to avoid a circular import.

splines Provides the B-, M- and I-splines used in various parts of the package.

error_handling Provides exception classes for error handling.
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e.2 Computational preliminaries: keeping track of
hyperparameters in composite objects

A GaussianProcess instance has up to three attributes with hyperparameters: the
covariance kernel k, the noise covariance kernel noise_k and the mean function mu.
Each of these objects in turn may be composed of several objects combined through
addition, multiplication, etc. In order to provide a seamless interface to the hyperpa-
rameters of each of these objects, gptools makes extensive use of “getter methods
with property decorators.” This means that an attribute such as gp.params (the cur-
rent values of the hyperparameters of the covariance kernel, noise covariance kernel
and mean function of GaussianProcess instance gp) is in fact a method params()

which has beenmarked with the Python decorator @property such that it is accessed
with gp.params instead of gp.params(). The params() method then combines the
hyperparameters from all three objects. If a simple array were returned, the user
would be unable to modify the parameters using the array returned. Furthermore,
each class with associated hyperparameters distinguishes between free and fixed
hyperparameters. Therefore, properties like free_params are also implemented as
getter methods with property decorators such that they return only the hyperparam-
eters which are free. Again, it is desirable that the array which is returned supports
modification of the elements. As such, the array-like classes CombinedBounds and
MaskedBounds classes were implemented to solve this.

The CombinedBounds class represents the combination of the arrays from two
objects. Its constructor takes two array-like objects l1 and l2 and provides a unified
interface to them. Attempting to get an item retrieves the relevant item from the
corresponding array. At present this is done internally by casting the two array-like
objects to Python’s list data type and concatenating them before applying the array
slice object, so only basic slice indexing is supported. Attempting to change the
value of an item sets the relevant value of the relevant array. Because of how this is
implemented at present, slice indexing is not supported.

The MaskedBounds class represents an array which has beenmasked, for instance
the hyperparameters which are free to vary. Its constructor takes an array-like object
a and a mask array m. The mask array should consist of the indices of the values
which are to be included in the masked version of the array. If the arrays are stored
internally as NumPy arrays, then the getting and setting of items will support the
full complexity of Python’s slice indexing.
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e.3 Representing a Gaussian process computationally: the
GaussianProcess class

The GaussianProcess class is the main class of gptools, and represents a Gaussian
process. A class diagram is given in figure e.2. This class is responsible both for
storing the data as well as evaluating the covariance kernel and making predictions.

e.3.1 Attributes of the GaussianProcess class

The attributes of the GaussianProcess class are:

num_dim Number of dimensions D: x ∈ RD. This is actually a getter method with a
property decorator which retrieves the value from k.

k Covariance kernel k(xi, xj).

noise_k Covariance kernel for the noise.

mu Parametric mean function m(x).

hyperprior Prior distribution for the hyperparameters, returns ln fΘ(θ) when called
with the values for the hyperparameters θ. This is actually a gettermethodwith
a property decorator which combines the prior distributions from k, noise_k
and mu. Note that the parameters of k, noise_k and mu are all independent of
each other, the classes have no knowledge of each other.

X Locations the training data are taken at, or the underlying quadrature points,
X ∈ Rn×D or X ∈ RnQ×D.

n Derivative orders for the training data. For each point in X, this gives the order of
derivative with respect to each dimension for the corresponding value y. By
applying this to y and not z = Ty the Gaussian process can be constructed to
include constraints on linear combinations of values and derivatives.

T Transformation matrix for the training data, T ∈ Rn×nQ .

y Observed (training) data, y ∈ Rn or z ∈ Rn.

err_y Uncorrelated, possibly heteroscedastic noise on the observed data, Σn,obs.

K Covariance matrix, K(X,X) ∈ Rn×n or K(X,X) ∈ RnQ×nQ .
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GaussianProcess

num_dim : int
k : Kernel
noise_k : Kernel
mu : MeanFunction
hyperprior : JointPrior
X : array, (nQ, D)
n : array, (nQ, D)
T : array, (n, nQ)
y : array, (n,)
err_y : array, (n,)
K : array, (nQ, nQ)
noise_K : array, (nQ, nQ)
L : lower triangular array, (n, n)
alpha : array, (n, 1)
ll : float
diag_factor : float
K_up_to_date : bool
use_hyper_deriv : bool
params : CombinedBounds
param_bounds : CombinedBounds
param_names : CombinedBounds
fixed_params : CombinedBounds
free_params : CombinedBounds
free_param_bounds : CombinedBounds
free_param_names : CombinedBounds

__init__(k : Kernel) : void
add_data(X : array, (nQ, D), y : array, (n,)) : void
remove_outliers() : tuple
condense_duplicates() : void
compute_Kij(Xi : array, (ni, D), Xj : array, (nj, D), ni : array, (ni, D), nj : array, (nj, D)) :

array, (ni, nj)
compute_K_L_alpha_ll() : void
update_hyperparameters(new_params : array, (len(free_params),)) : float
optimize_hyperparameters() : tuple
predict(Xstar : array, (nQ∗, D)) : array, (n∗,) or tuple or dict
plot() : AxesSubplot or tuple
draw_sample(Xstar : array, (nQ∗, D)) : array, (n∗, num_samp)
predict_MCMC(X : array, (nQ∗, D)) : dict
sample_hyperparameter_posterior() : EnsembleSampler
compute_from_MCMC(X : array, (nQ∗, D)) : dict
compute_l_from_MCMC(X : array, (nQ∗, D)) : array, (n∗,)
compute_w_from_MCMC(X : array, (nQ∗, D)) : array, (n∗,)
compute_ll_matrix(bounds : tuple, num_pts : int or array, (len(free_params),)) : tuple
_compute_ll_matrix(idx : int, param_vals : list, num_pts : array, (len(free_params),)) : array

Figure e.2: Class diagram for the GaussianProcess class. In this type of diagram,
the class name is given in the top box, the attributes are given in the middle box
and the methods are given in the bottom box. The data types of variables are
indicated after the colon. For array data types, the shape is given as the following
tuple. A GaussianProcess has n observations connected to nQ quadrature points
of dimension D. If there is no transformation matrix T then n = nQ.
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noise_K Noise covariance matrix, Σn ∈ Rn×n (less the observation noise given in
err_y). Note that at present gptools applies the noise covariance kernel to
the quadrature points X and then transforms it according to TΣnT

T. This is
somewhat restrictive, because it does not allow for the inference of additional
noise on the transformed quantities z.

L Lower-triangular Cholesky decomposition of the total covariance matrix, LLT =
Ktot = T(K(X,X) +Σn(X,X))TT +Σn, obs, where Σn,obs is the observation noise
on z stored in err_y.

alpha Solution to Ktotα = z − Tm(X).

ll Log-posterior density of the fit, ln fΘ|Z(θ|z).

diag_factor Factor which is multiplied by the machine epsilon and added to Ktot
to stabilize the Cholesky decomposition.

K_up_to_date Boolean used to keep track of whether or not K, L, alpha and ll are
up to date. Used to avoid having to recompute these each time predict()

and the related methods called.

use_hyper_deriv Boolean used to indicate whether or not the derivatives with
respect to the hyperparameters should be used when finding the map estimate.

params, param_bounds, param_names Hyperparameters, hyperparameter bounds
and hyperparameter names from k, noise_k and mu. These are actually getter
methods with property decorators which return CombinedBounds instances
to facilitate getting and setting the parameters in the three objects all at once.

fixed_params A list of boolean flags indicating which of the hyperparameters of k,
noise_k and mu are to be held fixed while optimizing or sampling the hyper-
parameters. This is actually a getter method with a property decorator which
returns a CombinedBounds instance to facilitate getting and setting the flags
in the three objects all at once.

free_params, free_param_bounds, free_param_names Equivalent to params,
param_bounds and param_names but masked to have only the free hyperpa-
rameters.
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e.3.2 Creating a GaussianProcess and adding data

e.3.2.1 The __init__()method

All that is required to create a GaussianProcess is a covariance kernel k(xi, xj) in
the form of an instance of Kernel. If a noise covariance kernel is to be used, this
must also be an instance of Kernel. A mean function m(x) can also be specified by
providing an instance of MeanFunction.

e.3.2.2 The add_data()method

The add_data() method allows data to be added incrementally, not just at the time
of creation. It accepts the independent variables X, the data y and optionally the
data’s standard deviation σy, the derivative orders of the observationsn and a transfor-
mation matrix T. If no transformation matrix T is passed but the GaussianProcess
already has a T, the T for the data being added is automatically taken to be the identity
matrix. If a transformation matrix T is passed and the GaussianProcess already
has a T, then the new T is given by the block diagonal matrix

T = [
Told 0
0 Tnew] . (e.1)

e.3.2.3 The condense_duplicates()method

Theway that the transformationmatrices T are combined in the add_data()method
can make working with the GaussianProcess very slow if, for instance, add_data()
is repeatedly called to add multiple channels from a line-integrated diagnostic which
all share the same quadrature points XQ. The condense_duplicates() method
finds the unique rows in X and creates a new X containing only these rows and
constructs a new transformation matrix T which utilizes this condensed version of
X. The condense_duplicates() method removes any columns of the new T which
are all zeros, indicating a quadrature point which does not actually enter into the
calculation. This can happen when the weights of points outside of the shadow of
the limiter are set to zero, for instance.

e.3.2.4 Automatically detecting suspicious data points: the
remove_outliers()method

The remove_outliers() method implements a very primitive form of outlier de-
tection as a way of enabling first-cut, automated processing of data. For rigorous
analysis, one should of course always inspect their data and attempt to explain why
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outlying points occur. For bulk processing of data, however, the ability to auto-
matically fit many profiles without human intervention is invaluable. The method
evaluates the mean z∗ at each of the data points and finds the points for which the
weighted difference

Δ = |z∗ − z|
σz

(e.2)

is greater than a set threshold (by default the threshold is three). In this expression,
the absolute value and division are both performed elementwise. Essentially, any
points which lie more than three standard deviations away from the mean curve are
thrown out. This method has a significant potential issue: the hyperparameters must
be estimated before the mean curve z∗ can be predicted. If a point is sufficiently
far off, it will cause the covariance length scale to become very small such that the
curve passes close to all of the points. Therefore, this method is only appropriate for
rough processing of the data, and will work best when good a priori estimates for
the hyperparameters are available (such that the rough guesses can be used for this
process and the map estimate does not need to be found with potential outliers still
in the data set). In principle, a robust approach which incorporates the possibility
of outliers into the probability model instead of simply throwing suspicious data
out should be preferred [525–528], but this level of sophistication was not employed
here.

e.3.3 Formulating the pieces necessary to make an inference

The compute_K_L_alpha_ll() method is the fundamental method for training the
Gaussian process once the data have been added using the add_data()method. The
update_hyperparameters()method wraps the compute_K_L_alpha_ll()method
in a way such that it can act as the objective function for an optimizer or mcmc
sampler.

e.3.3.1 The compute_Kij()method

The compute_Kij()method is used to form a covariance matrix K(Xi,Xj) by evaluat-
ing the covariance function k(xi, xj) between all possible pairs of points in Xi and Xj.
It tiles the input arrays of locations Xi, Xj and derivative orders ni, nj into the appro-
priate shape to be passed to Kernel.__call__() and then evaluates the covariance
kernel. A flag selects between evaluating the covariance kernel, the noise covariance
kernel and a user-specified covariance kernel. One shortcoming of this method is
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that it does not exploit the symmetry of K(X,X), but an earlier implementation using
a double for-loop which did exploit this symmetry was found to be much slower.

e.3.3.2 The compute_K_L_alpha_ll()method

The algorithm for the compute_K_L_alpha_ll()method is based on algorithm 2.1 in
[297], but has been extended to handle transformed quantities and a mean function
according to the derivation in section 2.3.9.

Because the compute_K_L_alpha_ll() method is called by several other meth-
ods and in order to avoid repeated state-checking code, the method first checks
to see if the attributes K(X,X), L, α and ln fΘ|Z(θ|z) are up to date. If they are
not up to date, the method computes K(X,X) and Σn (i.e., K and noise_K) using
the compute_Kij() method. The noise kernel must be handled specially, as the
DiagonalNoiseKernel class is meant to handle uncorrelated noise, but the way the
compute_Kij()method works breaks this assumption when there are multiple obser-
vations at the same location (see section e.4.2). Therefore, if noise_k is an instance
of DiagonalNoiseKernel, Σn is produced directly from the σn stored in noise_k

without calling compute_Kij(). If T is present, the product T(K(X,X) + Σn)TT is
performed. If T is meant to be the identity matrix, this is represented as T = None so
that this can be skipped. Once the component covariance matrices have been stored
the total covariance matrix

Ktot = T(K(X,X) + Σn(X,X))TT + Σn, obs (e.3)

is formed and its lower triangular Cholesky decomposition LLT = Ktot is computed
and stored. Next, if a mean function is present, the quantity z − Tm(X) is computed,
where again the product with T is skipped if T is meant to be the identity matrix.
Then the vector

α = K−1
tot(z − Tm(X)) = (LLT)−1(z − Tm(X)) = LT\(L\(z − Tm(X))) (e.4)

(where2 b = A\c is the solution to Ab = c) is computed using an efficient solver
for matrices which have been Cholesky-decomposed. The log-likelihood is then

2. The notation b = A−1cwould have worked equally well, but the backslash notation is used to emphasize
that the use of the Cholesky decomposition and efficient solver algorithms for triangular systems
obviates the need to compute the matrix inverse directly.
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computed from

ln fZ|Θ(z|θ) = −1
2(z − Tm(X))

T
(T(K(X,X) + Σn)TT + Σn,obs)

−1
(z − Tm(X))

− 1
2

ln|T(K(X,X) + Σn)TT + Σn,obs| − n
2

ln 2π (e.5)

= −1
2(z − Tm(X))K−1

tot(z − Tm(X)) − 1
2

ln |Ktot| − n
2

ln 2π (e.6)

= −1
2(z − Tm(X))

Tα −
n

∑
i=1

ln Lii − n
2

ln 2π, (e.7)

where in the last step the useful fact that the determinant of a matrix is equal to twice
the product of the diagonal of the Cholesky decomposition has been used. This
is then converted to the log-posterior density ln fΘ|Z(θ|z) by adding the log-prior
density for the hyperparameters ln fΘ(θ).

If the derivatives with respect to the hyperparameters are requested, the deriva-
tives of the log-posterior with respect to each of the free parameters are computed
according to equation (2.63):

∂
∂θi

fΘ|Z(θ|z) = 1
2 (T

∂m(X)
∂θi )

T

K−1
tot(z − Tm(X))

+ 1
2(z − Tm(X))

TK−1
tot

∂Ktot

∂θi
K−1

tot(z − Tm(X))

+ 1
2(z − Tm(X))

TK−1
tot (T

∂m(X)
∂θi )

− 1
2

tr (K−1
tot

∂Ktot

∂θi ) + ∂
∂θi

ln fΘ(θ) (e.8)

= (T
∂m(X)

∂θi )

T

α + 1
2
αT

∂Ktot

∂θi
α − 1

2
tr ((LLT)−1 ∂Ktot

∂θi ) + ∂
∂θi

ln fΘ(θ).

(e.9)

Note that the first term only enters when θi is a parameter of the mean function and
the second and third terms only enter when θi is a hyperparameter of the covari-
ance kernel or noise covariance kernel. Therefore, this expression is implemented
by first looping over the free hyperparameters of the covariance kernel and noise
covariance kernel and evaluating the second and third terms, then looping over the
free parameters of the mean function (if it is present) and evaluating the first term,
then finally evaluating the fourth term by looping over all of the parameters and
hyperparameters and adding the log-derivative of the prior to the result previously
obtained for each one.
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Finally, when all of this has completed successfully, K_up_to_date is set to True

so that these quantities do not have to be recomputed each time predict() or a
related method is called.

e.3.3.3 The update_hyperparameters()method

The update_hyperparameters() method takes the new values of the free hyperpa-
rameters as an argument, along with optional flags to determine what is returned
and how edge cases and errors are handled. The method first updates the hyperpa-
rameters in the covariance kernel, noise covariance kernel and mean function. If
the exit_on_bounds flag is True it checks to see if the log-prior density ln fΘ(θ) is
finite before calling compute_K_L_alpha_ll(). What is returned is one or both of
− ln fΘ|Z(θ|z) and −𝛁θ ln fΘ|Z(θ|z), depending on the state of the use_hyper_deriv
attribute and the hyper_deriv_handling flag. The negative of the log-posterior
density is used so that the update_hyperparameters() method can be used as the
objective function of one of the many minimizers provided by SciPy.

e.3.4 Finding the map estimate: the optimize_hyperparameters()
method

The optimize_hyperparameters() method uses one of several optimization rou-
tines in SciPy [293] to find the values for the free hyperparameters which maximize
the log-posterior. By default, the sequential quadratic programming routine slsqp
is used [402]. This optimizer was found to have acceptable performance both when
analytic derivatives with respect to the hyperparameters are available and when
these must be estimated using finite differences. Note that there is a slight issue
with SciPy’s implementation of finite differences: a forward difference is always used,
so if a variable is at the upper limit of its bounds, SciPy will attempt to evaluate
the log-likelihood at a point which is not allowed by the prior distribution. The
optimizer can be started from the current value of free_params or a set of one or
more points drawn from the prior distribution fΘ(θ). When multiple points are used,
the evaluations can proceed in parallel on as many processors as are available.

e.3.5 Making a prediction and drawing random samples

e.3.5.1 The predict()method

The predict() method can proceed in one of two ways: if mcmc sampling of the
hyperparameters is to be used, the relevant arguments are passed directly to the
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predict_MCMC() method. Otherwise, the predictive mean and covariance are cal-
culated according to equation (2.59). The covariance matrix K(X,X∗) is computed
using the compute_Kij() method. The user can decide whether or not the noise
kernel Σn is included in the prediction and its variance using the noise keyword;
this is not shown in the following because it is not a very common use case. One
can see the effect simply by considering the noise covariance kernel to be added to
the signal covariance kernel when computing K(X,X∗) and K(X∗,X∗).

The predictive mean is

z∗ = T∗m(X∗) + T∗K(X∗,X)TTK−1
tot(z − Tm(X)) (e.10)

= T∗(m(X∗) + K(X∗,X)TTα), (e.11)

where the mean function m(X∗) and the product with the output transformation
matrix T∗ are only computed if the respective attributes are present.

The predictive covariance matrix is only computed if it is requested, thereby
allowing considerable time savings when uncertainty estimates are not required. To
compute the predictive covariance matrix, first let

v = L\TK(X,X∗). (e.12)

The predictive covariance matrix is then

cov[z∗, z∗|z] = T∗K(X∗,X∗)TT∗ − T∗K(X∗,X)TTK−1
totTK(X,X∗)TT∗ (e.13)

= T∗(K(X∗,X∗) − K(X∗,X)TT(LLT)−1TK(X,X∗))TT∗ (e.14)

= T∗(K(X∗,X∗) − K(X∗,X)TTLT\L\TK(X,X∗))TT∗ (e.15)

= T∗(K(X∗,X∗) − vTv)TT∗ . (e.16)

If only the standard deviation is required, the square root of the diagonal of this
matrix is then extracted.

If the user requests that samples be drawn from the distribution during this
call, z∗ and cov[z∗, z∗|z] are then passed to the draw_sample()method so that they
do not need to be re-computed. If a sample rejection function is provided in the
rejection_func keyword, the samples are then filtered through this function. This
enables the rejection of negative and/or non-monotonic samples, for example. The
uncertainty and mean calculation can be overridden with the full_MC keyword. If
this keyword is True, the mean and covariance matrix returned are the sample mean
and covariance matrix of the filtered samples. If the constraint information present
in the rejection function is called C, then the quantities returned then represent
estimates of E[z∗|z, θ,C] and cov[z∗, z∗|z, θ,C], where the dependence on the hy-
perparameters θ has also been made explicit. Care must be exercised when using
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this formulation, however, as the map estimate of the hyperparameters θ will be
θ = arg maxθ fΘ|Z(θ|z) and not arg maxθ fΘ|Z,C(θ|z,C), nor will mcmc sampling
be capable of producing samples from fΘ|Z,C(θ|z,C). If this capability is necessary,
more advanced techniques are needed [340], but such sophistication is not supported
by gptools.

e.3.5.2 The draw_sample()method

The draw_sample()method draws one ormore samples of the profile at a fixed value
of the hyperparameters, ̃z∗ ∼ fZ∗|Z,Θ(z∗|z, θ), using equation (2.52), reproduced here
for convenience:

̃z∗ = Au + z∗ (e.17)

AAT = cov[z∗, z∗|z] (e.18)
u ∼ 𝒩 (0n∗

, In∗
). (e.19)

The user can either allow the method to produce its own random numbers (using
the appropriate routines from NumPy [529]), or the user can provide random num-
bers which follow either the standard normal distribution 𝒩 (0, 1) or the uniform
distribution 𝒰 (0, 1). This allows the user to employ advanced sampling strategies
such as Latin hypercube sampling [355], quasi-Monte Carlo sampling [291] or sparse
quadrature [338] whichmay require the problem to bemapped to the unit hypercube
for efficient implementation. To compute the matrix square root A, the user can
choose between using the Cholesky decomposition

cov[z∗, z∗|z] = AAT = LLT (e.20)

and the eigendecomposition

cov[z∗, z∗|z] = AAT = QΛ1/2(QΛ1/2)T. (e.21)

When using the eigendecomposition, the number of eigenvalues to retain can be
selected. For efficiency, only the requested number of eigenvectors and eigenvalues
are computed. Sometimes it is useful to use the (weighted) eigenvectors as basis
functions, in which case the values u are the weights of each basis function contained
in the columns ofQΛ1/2. But, the eigenvectors are only defined up to a constant factor;
even if normalized eigenvectors are used they are only specified up to a sign. As the
sign chosen by the SciPy routine eigh() is not defined and can vary from platform to
platform and for small changes of the hyperparameters, the modify_sign keyword
allows the user to control which sign is used. Using this keyword, the sign of the
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value, slope or concavity of the eigenvectors (where the derivatives are computed
with forward or backwards finite differences, as appropriate) can be set.

If a mean and covariance matrix are not provided, the predict() method is
used to compute the posterior mean and covariance matrix. If precomputed random
variables are not provided and themethod is not set to use the eigendecomposition of
the posterior covariancematrix, then theNumPy function multivariate_normal()

is used to draw samples from 𝒩 (z∗, cov[z∗, z∗|z]) directly. If precomputed random
variables are not provided and the method is set to use the eigendecomposition of
the posterior covariance matrix, then the NumPy function standard_normal() is
used to draw samples from 𝒩 (0, 1). If uniform precomputed random variables are
provided they are converted to standard normal variables using the inverse cdf of
the standard normal, u = Φ−1(U) where u ∼ 𝒩 (0, 1) and U ∼ 𝒰 (0, 1).

e.3.6 Using mcmc to sample the hyperparameters

e.3.6.1 Generating mcmc samples: the sample_hyperparameter_posterior()
method

The sample_hyperparameter_posterior()method uses an affine-invariant ensem-
ble sampler [353, 354] to draw samples of the hyperparameters from fΘ|Z(θ|z). The
EnsembleSampler instance is returned such that samples can be added as needed to
obtain burn-in and then used with the other methods described in this section to
evaluate the actual profiles. While it would be in the spirit of object orientation to
store the EnsembleSampler as an attribute of GaussianProcess, this is not possible
because EnsembleSampler is not pickleable, which means that a GaussianProcess
instance which stores an EnsembleSamplerwould no longer be pickleable and hence
could not be passed to other processors for parallel evaluation.

e.3.6.2 Computing profiles from mcmc samples: the compute_from_MCMC()
method

The compute_from_MCMC() method uses the mcmc samples obtained using the
sample_hyperparameter_posterior() method to evaluate the profile. It uses the
_ComputeGPWrapper helper object to enable parallel execution on as many proces-
sors as are available. What it returns is a collection of samples of E[z∗|z, θ] and
cov[z∗, z∗|z, θ].
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e.3.6.3 Combining profiles computed from mcmc samples: the
predict_MCMC()method

The predict_MCMC() method calls the compute_from_MCMC() method and post-
processes the results as described in section 2.3.7. The full_MC keyword overrides the
use of the formulas in section 2.3.7. Instead, for each sample of the hyperparameters
θ(i), a number of samples are drawn. These can then be filtered through a rejection
function the same as was described for the predict()method in section e.3.5.1. The
mean and covariance matrix returned are then the sample mean and covariance
matrix obtained from the surviving samples, E[z∗|z,C] and cov[z∗, z∗|z,C]. Note,
however, that the samples of the hyperparameters were still taken from fΘ|Z(θ|z)
and not fΘ|Z,C(θ|z,C), so one must be very careful when considering the statistical
implications of the result.

e.4 Representing a covariance kernel computationally: the
Kernel class and the gptools.kernel subpackage

The kernel subpackage contains all of the implementations of covariance kernels
in gptools. A basic diagram of the subpackage is given in figure e.3.

e.4.1 The core Kernel classes

e.4.1.1 The Kernel abstract class

The Kernel class is the other core class of gptools, and represents a covariance
kernel. A class diagram is given in figure e.4. This class is responsible for keeping
track of the current value of the hyperparameters and evaluating the covariance
matrix K(Xi,Xj) for arbitrary pairs of Xi, Xj.

Classes which implement Kernel must implement the __call__() method,
which is often the only thing that needs to be done to create a new covariance
kernel. The __call__() method evaluates the covariance kernel k(xi, xj) between
pairs of points. These must already have been formed into the M × D arrays Xi and
Xj by, for instance, the compute_Kij() method of the GaussianProcess class. The
M × D arrays ni and nj contain the orders of differentiation with respect to each
dimension for each point in Xi and Xj, respectively. The hyper_deriv keyword can
be set to an integer, in which case the derivative with respect to the hyperparameter
at the index should be returned.

The __add__()method overrides the + operator such that the sumof two kernels
can be created simply by typing k1 + k2, which will return an instance of SumKernel.
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Kernel

num_dim : int
num_params : int
enforce_bounds : bool
hyperprior : JointPrior
params : array, (num_params,)
param_bounds : CombinedBounds
param_names : array of str, (num_params,)
fixed_params : array of bool, (num_params,)
num_free_params : int
free_param_idxs : array of int, (num_free_params,)
free_params : MaskedBounds
free_param_bounds : MaskedBounds
free_param_names : MaskedBounds

__init__() : void
__call__(Xi : array, (M, D), Xj : array, (M, D),

ni : array of int, (M, D), nj : array of int, (M, D)) : array, (M,)
set_hyperparams(new_params : array, (num_params,)) : void
__add__(other : Kernel) : SumKernel
__mul__(other : Kernel) : ProductKernel
_compute_r2l2(tau : array, (M, D)) : array, (M)

Figure e.4: Class diagram for the Kernel abstract class. __call__() is a placeholder
method and must be implemented in any subclass which implements Kernel.

Likewise, the __mul__()method overrides the * operator such that k1 * k2 returns
an instance of ProductKernel.

Many of the kernels require the value of r2/ℓ2, as defined in equation (b.1):

r2

ℓ2 →
D

∑
d=1

τ2d
ℓ2
d

=
D

∑
d=1

(xid − xjd)
2

ℓ2
d

. (e.22)

The _compute_r2l2() method takes as input the difference matrix τ = Xi − Xj and
evaluates equation (e.22) for each point. Optionally, it can also return the M × D
matrix of tiled ℓ values for each dimension of each point. This method assumes that
the covariance length scales are the last elements in params.

The attributes of the Kernel class are:

num_dim The number of dimensions the Kernel is defined over.

num_params The number of hyperparameters.
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enforce_bounds If this is True, new values of the hyperparameters which exceed
the bounds are set to lie right at the bounds when set_hyperparams() is
called. This is a way to avoid issues when the finite difference routine in
SciPy’s optimization package attempts to evaluate a point which is outside of
the bounds.

hyperprior The prior distribution for the hyperparameters.

params The current values of the hyperparameters.

param_bounds The bounds on each of the hyperparameters. This is actually a getter
method with a property decorator which returns the param_bounds attribute
of hyperprior.

param_names The names of the hyperparameters.

fixed_params If the entry corresponding to a given hyperparameter is True then
that hyperparameter will be held fixed during optimization and mcmc sam-
pling.

num_free_params The number of free hyperparameters. This is actually a getter
method with a property decorator.

free_param_idxs Indices of the free hyperparameters in params. This is actually a
getter method with a property decorator.

free_params The current values of the free hyperparameters. This is actually a get-
ter method with a property decorator which returns a MaskedBounds instance
to facilitate convenient setting of the free hyperparameters.

free_param_bounds The bounds on each of the hyperparameters. This is actually
a getter method with a property decorator which returns a MaskedBounds

instance to facilitate convenient setting of the bounds of the free hyperparam-
eters.

free_param_names The names of the free hyperparameters. This is actually a getter
method with a property decorator which returns a MaskedBounds instance to
facilitate convenient setting of the names of the free hyperparameters.



e.4. Representing a covariance kernel computationally 413

e.4.1.2 Representing binary operations on covariance kernels

The BinaryKernel class represents binary operations on covariance kernels, such
as addition and multiplication. Given a binary operation such as k1 + k2, the hyper-
parameters of k1 will come first and the hyperparameters of k2 will come second.

The SumKernel class represents the sum of two covariance kernels: k = k1 + k2.
If derivatives with respect to the hyperparameters are requested, only the covariance
kernel to which the hyperparameter belongs is evaluated.

The ProductKernel class represents themultiplication of two covariance kernels:
k = k1k2. Equation (b.106) is implemented in the __call__() method as follows:
first, the derivative orders ni and nj are joined into the M × 2D array nij and the
unique rows in nij are found. Then, equation (b.106) is evaluated for each unique
row in nij. This is accomplished by forming the “derivative pattern” deriv_pattern
representing nij. For each dimension of [xi, xj]T that is to be differentiated with
respect to, deriv_pattern contains the index of that dimension repeated a number
of times equal to the order of differentiation with respect to that dimension. This
corresponds to the set {1, … , n} used to index the variables x[i] in equation (b.106).3

In other words, if one wishes to find ∂3k(xi, xj)/∂x2i1∂xj2 of the 2d covariance kernel k,
deriv_pattern will be [1, 1, 4]. Next, the power set 𝒫({1, … , n}) is obtained using
the powerset() function given in [530]. Finally, the method loops over all of the
subsets in 𝒫({1, … , n}) and evaluates the product of the appropriate derivatives of
the two covariance kernels and adds this to the result.

e.4.1.3 Representing covariance kernels which must be differentiated using the
chain rule: the ChainRuleKernel abstract class

The ChainRuleKernel class represents covariance kernels which must be differen-
tiated through use of the chain rule, including the rational quadratic and Matérn
covariance kernels. Implementing subclasses must implement the following meth-
ods:

_compute_k(tau) Evaluate the covariance kernel k(τ) at τ = Xi − Xj. This case
with no derivatives is done separately for efficiency.

_compute_y(tau) Evaluate the “inner” term y(τ) of k = k(y(τ)).

_compute_dk_dy(y, n) Evaluate dnk(y)/dyn.

_compute_dy_dtau(tau, b, r2l2) Evaluate ∂ny/ ∏D
i=1 ∂τnii where n = ∑D

i=1 ni.

3. In the actual implementation the indexing of the dimension is zero-based. One-based indexing is used
throughout this thesis for clarity.
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The __call__() method first evaluates the difference matrix τ = Xi − Xj. Next,
it computes nj, the total number of times a derivative with respect to any component
of xj is taken for each of the points so that the appropriate power of equation (b.10)
can be included at the end. After that, the derivative orders ni and nj are joined into
the M × 2D array n_combined and the unique rows are found. The method then
loops over the unique rows and calls the internal method _compute_dk_dtau() to
evaluate the appropriate derivatives with respect to the dimensions of τ. Finally, the
result is multiplied by σ2f (−1)nj and returned.

The _compute_dk_dtau() method finds ∂nk(τ)/ ∏D
d=1 ∂τndd where n = ∑D

d=1 nd
by carrying out the sum in equation (b.30). It takes as arguments the difference
matrix τ = Xi − Xj and a D element array giving the order of differentiation with
respect to each dimension. It starts out by forming a similar derivative pattern
array to what was used in section e.4.1.2, only here the derivatives are only with
respect to the elements of τ and not the concatenation of xi and xj. Then, if the
derivative pattern is empty (i.e., no derivatives), it simply uses the _compute_k

() method to evaluate k(τ). Otherwise, it uses the generate_set_partitions()

function described in section e.7.4 to generate the partitions Π. For each partition
π ∈ Π, it uses the internal method _compute_dk_dtau_on_partition() to com-
pute k(|π|)(y(τ)) ∏B∈π ∂|B|y(τ)/ ∏j∈B ∂τ[j] and adds this to the running sum.

The _compute_dk_dtau_on_partition()method takes as arguments the differ-
ence matrix τ = Xi − Xj and a list of arrays representing a partition of the deriva-
tive pattern from the _compute_dk_dtau() method. The method first uses the
_compute_y() method to find y(τ). Then it uses the _compute_dk_dy() method to
find d|π|k(y)/dy|π|. Finally, it loops over all of the blocks B in the partition π and
finds ∂|B|y(τ)/ ∏j∈B ∂τj using the _compute_dy_dtau() method and multiplies this
into the running product.

e.4.1.4 Using numerical methods to handle arbitrary covariance kernels: the
ArbitraryKernel class

The ArbitraryKernel class represents a covariance kernel for which k(xi, xj) has
been implemented as a standalone Python function but none of the work to compute
derivatives or implement a subclass of Kernel has been done yet. Derivatives of the
covariance kernel are instead found using the numerical differentiation capabilities of
mpmath [531]. The _mask_cov_func() helper method puts the covariance function
into a form with the correct fingerprint for mpmath to use.
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e.4.1.5 Applying covariance kernels only to certain dimensions: the
MaskedKernel class

It is often desirable to form a tensor product of covariance kernels. For instance,
to have a Gibbs covariance kernel with tanh covariance length scale function in
the spatial dimension and an se covariance kernel in the temporal dimension. The
ProductKernel class multiplies kernels operating on the same dimensions, and so
is not directly applicable to this case. The MaskedKernel class provides a way of
specifying which dimension(s) a Kernel applies to, such that covariance kernels
masked to only operate on specific dimensions can be constructed before forming a
ProductKernel.

e.4.2 The gptools.kernel.noise submodule

The DiagonalNoiseKernel class represents uncorrelated, homoscedastic noise. It
has a single hyperparameter, σn. Where xi = xj it returns σ2n, zero otherwise. Note
that this scheme causes a problem when there are multiple data points with the same
x: this will result in off-diagonal elements being inserted into the covariance matrix.
Therefore, the GaussianProcess class detects if the noise covariance kernel is an
instance of DiagonalNoiseKernel and, if so, handles it specially instead of relying
on the compute_Kij() method. Note that this approach will break when trying
to combine an instance of DiagonalNoiseKernel with another covariance kernel
through either addition or multiplication.

The ZeroKernel class is a subclass of DiagonalNoiseKernel with σn = 0 held
fixed. This is used to represent when there is no additional homoscedastic noise to
be inferred. It can also be used to set the covariance kernel itself to k(xi, xj) = 0 such
that gptools can be used to perform Bayesian nonlinear regression.

e.4.3 The SquaredExponentialKernel class

The SquaredExponentialKernel class implements the multidimensional se covari-
ance kernel described in section b.1, including the full expression for the derivatives
of the covariance kernel given in equation (b.14) and derivatives with respect to the
hyperparameters. This is carried out in practice by first finding

k = σ2f exp
(

−1
2

D

∑
d=1

τ2d
ℓ2
d )

. (e.23)
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Then, the array of Hermite polynomial factors

(
−1

√2ℓd )

nd

Hnd (
τd

√2ℓd )
(e.24)

is formed. If the derivative with respect to one of the covariance length scales ℓe is
requested, the relevant entry in the Hermite polynomial factors is multiplied by

τ2e
ℓ3
e

− I(ne > 0)
ne
ℓe

− I(ne > 0)
√2neτe

ℓ2
e

Hne−1(τ1/(√2ℓe))

Hne(τe/(√2ℓe))
. (e.25)

Finally, the product over the Hermite factors is multiplied into k along with (−1)nj
where nj is the total order of differentiation with respect to any of the dimensions of
xj. Using the broadcasting capabilities of SciPy, this is carried out without needing
to write an explicit loop.

e.4.4 The RationalQuadraticKernel class

The RationalQuadraticKernel class implements the multidimensional rq covari-
ance kernel described in section b.2, with α treated as a free hyperparameter. This
is accomplished by implementing ChainRuleKernel. The _compute_k() method
returns y−α, where

y = 1 + 1
2α

D

∑
d=1

τ2d
ℓ2
d

(e.26)

is computed with the _compute_y() method. The _compute_dk_dy() method com-
putes

dnk(y)
dyn

= (1 − α − n)ny−α−n. (e.27)

where the correct product form of the Pochhammer symbol as described in sec-
tion e.7.1 is used. Finally, _compute_dy_dtau() computes ∂|B|y(τ)/ ∏j∈B ∂τ[j] accord-
ing to equation (b.31).

e.4.5 The gptools.kernel.matern submodule

The gptools.kernel.matern submodule provides several implementations of the
Matérn covariance kernel described in section b.3.
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e.4.5.1 The full Matérn covariance kernel: the MaternKernel class

The MaternKernel class implements ChainRuleKernel and provides full support
for arbitrary order ν and arbitrary orders of differentiation as described in section b.3.
The _compute_k() method computes

k = σ2f
21−ν

Γ(ν) (
2ν

D

∑
d=1

τ2d
ℓ2
d )

ν/2

Kν ((
2ν

D

∑
d=1

τ2d
ℓ2
d )

1/2

)
, (e.28)

where the _compute_y() method is used to compute

y = 2ν
D

∑
d=1

τ2d
ℓ2
d

. (e.29)

The _compute_dk_dy() method computes

dnk
dyn

= 21−ν

Γ(ν)
dn

dyn (yν/2Kν(y1/2)), (e.30)

where the derivative term is implemented in the helper function yn2Kn2Der() de-
scribed in section e.7.3. _compute_dy_dtau() computes ∂|B|y(τ)/ ∏j∈B ∂τ[j] accord-
ing to equation (b.48). Finally, in order to handle the issues near the origin dis-
cussed in section b.3.1, MaternKernel overrides the base implementation of the
_compute_dk_dtau_on_partition()method. When looping over the blocks in the
partition, it keeps track of n1, the number of times any variable is involved in a block
of length one. If at any point there is a block with length longer than two or a mixed
derivative in a block of length two, the function breaks out of the loop and returns
zero. Finally, it computes 2ν − 2n + n1, the exponent on τ in equation (b.59). If
this is equal to zero, the limit is undefined and the method returns scipy.nan (i.e.,
not-a-number). If this is greater than zero, d|π|k/dy|π| is set to zero.

e.4.5.2 Other Matérn covariance kernel implementations

Because MaternKernel was so complicated to derive and implement, several other
implementations were developed to permit testing with the Matérn covariance ker-
nel. The MaternKernelArb class implements ArbitraryKernel and uses numerical
differentiation and limit finding tools to handle derivatives. The MaternKernel1d
class is a basic implementation of the 1d Matérn covariance which treats ν as a free
hyperparameter but only supports up to first order derivatives. The Matern52Kernel
class is a fast Cython [532] implementation of the multidimensional Matérn covari-
ance kernel for fixed ν = 5/2 and only up to first derivatives. The Matern52Kernel
implementation was contributed by R. McGibbon [533].
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e.4.6 The gptools.kernel.gibbs submodule

The gptools.kernel.gibbs submodule provides two possible ways of implement-
ing the Gibbs covariance kernel described in section b.4.1. For basic cases (univariate,
only up to first derivatives, easy to compute first derivative of covariance length scale
function), the GibbsKernel1d class may be instantiated directly. The covariance
length scale function should take the locations x as its first argument, the derivative
order n as its second argument and the hyperparameters as the remaining arguments.
This formulation is used to implement a wide array of covariance length scale func-
tions, such as the specific class GibsbKernel1dTanh which uses the tanh covariance
length scale function. If multivariate data, higher order derivatives or particularly
complicated covariance length scale functions are to be used, the GibbsKernel1dArb
class implements ArbitraryKernel and uses mpmath to find derivatives numeri-
cally.

e.4.7 The gptools.kernel.warping submodule

The warping submodule provides support for the introduction of non-stationarity
by means of input warping. This module is a generalization of a contribution from
R. McGibbon, who suggested the use of beta-cdf warping [396] and provided a
basic implementation [534, 535]. The fully general implementation developed for
this thesis is built around two classes: WarpingFunction and WarpedKernel.

e.4.7.1 Representing input warping functions: the WarpingFunction class

The WarpingFunction class represents an input warping function. It keeps track
of its hyperparameters though the same machinery as the Kernel class. A class
diagram is given in figure e.5. The attributes are similar to those of the Kernel

class as described in section e.4.1.1, with the addition of the warping function fun

which should take as arguments an array xd ofM positions corresponding to a given
dimension d, the dimension index d, the derivative order n and all of the warping
hyperparameters and which should return the warped inputs at the points in xd.

e.4.7.2 Representing a covariance kernel with warped inputs: the
WarpedKernel class

The WarpedKernel class subclasses Kernel and has a WarpingFunction instance
stored in its w attribute and an associated Kernel instance stored in its k attribute.
Its __call__() method first passes the inputs through the warping function before
passing them to the __call__() method of the covariance kernel to be warped, k.
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WarpingFunction

fun : callable
num_dim : int
num_params : int
enforce_bounds : bool
hyperprior : JointPrior
params : array, (num_params,)
param_bounds : CombinedBounds
param_names : array of str, (num_params,)
fixed_params : array of bool, (num_params,)
num_free_params : int
free_param_idxs : array of int, (num_free_params,)
free_params : MaskedBounds
free_param_bounds : MaskedBounds
free_param_names : MaskedBounds

__init__(fun : callable) : void
__call__(X : array, (M,), d : int, n : int) : array, (M,)
set_hyperparams(new_params : array, (num_params,)) : void

Figure e.5: Class diagram for the WarpingFunction class.

At present, only first derivatives are supported. If these are requested, the products
in equation (b.89) through equation (b.91) are computed. The w_func() method is
a helper method for computing the input warping function and its derivatives. If
the covariance kernel to be warped is itself a WarpedKernel, w_func() computes

w = f (g(x)) (e.31)
dw
dx

=
df
dg

dg
dx

, (e.32)

where f is the input warping function of the covariance kernel to be warped k and g
is the input warping function of the WarpedKernel instance itself.

e.5 The MeanFunction class and the gptools.mean
submodule

The gptools.mean submodule provides support for non-zero, parametric mean
functions. Specifically, it provides the class MeanFunction which wraps a callable
object in a way that the GaussianProcess class can use. The MeanFunction class
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MeanFunction

fun : callable
num_params : int
enforce_bounds : bool
hyperprior : JointPrior
params : array, (num_params,)
param_bounds : CombinedBounds
param_names : array of str, (num_params,)
fixed_params : array of bool, (num_params,)
num_free_params : int
free_param_idxs : array of int, (num_free_params,)
free_params : MaskedBounds
free_param_bounds : MaskedBounds
free_param_names : MaskedBounds

__init__(fun : callable) : void
__call__(X : array, (M, D), n : array, M, D) : array, (M,)
set_hyperparams(new_params : array, (num_params,)) : void

Figure e.6: Class diagram for the MeanFunction class.

keeps track of its hyperparameters through the same machinery as the Kernel class.
A class diagram is given in figure e.6. The attributes are similar to those of Kernel
described in section e.4.1.1, with the addition of the mean function funwhich should
take as arguments theM ×D array of locations X, the D element vector of derivative
orders with respect to each dimension and the parameters and return an M element
vector with the mean function evaluated at each point in X. In addition, the mean
function should support the hyper_deriv keyword to compute derivatives with
respect to its hyperparameters.
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e.5.1 The mtanh mean function

The mtanh_profile() function implements the mtanh mean function given in equa-
tion (2.81):

z =
x0 − x
δ

(e.33)

mtanh(α, z) = (1 + αz)ez − e−z

ez + e−z (e.34)

y = h + b
2

+ h − b
2

mtanh(α, z) = h + b
2

+ h − b
2

(1 + αz)ez − e−z

ez + e−z (e.35)

dy
dx

= −h − b
2δ

1 + α(1 + 2z + e2z)/4
cosh2 z

. (e.36)

To enable the use of a gradient-based optimizer, first note that

∂z
∂x0

= 1
δ

(e.37)

∂z
∂δ

= −
x0 − x
δ2

= − z
δ

(e.38)

∂y
∂z

= h − b
2

1 + α(1 + 2z + e2z)/4
cosh2 z

. (e.39)

Then,

∂y
∂x0

=
∂y
∂z

∂z
∂x0

= h − b
2δ

1 + α(1 + 2z + e2z)/4
cosh2 z

(e.40)

∂y
∂δ

=
∂y
∂z

∂z
∂δ

= −z h − b
2δ

1 + α(1 + 2z + e2z)/4
cosh2 z

(e.41)

∂y
∂α

= z h − b
2

ez

ez + e−z (e.42)

∂y
∂h

= 1
2

+ 1
2

(1 + αz)ez − e−z

ez + e−z (e.43)

∂y
∂b

= 1
2

− 1
2

(1 + αz)ez − e−z

ez + e−z . (e.44)
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JointPrior

i : float
bounds : array, (n,)

__call__(theta : array, (n,)) : float
random_draw() : array, (n,)
sample_u(q : array, (n,)) : array, (n,)
elementwise_cdf(p : array, (n,)) : array, (n,)
__mul__(other : JointPrior) : ProductJointPrior

Figure e.7: Class diagram for the JointPrior abstract class. The number of vari-
ables represented is n.

Next, note that

∂
∂z

dy
dx

= −h − b
2δ

α − (αz + 2) tanh z
cosh2 z

(e.45)

∂
∂x0

dy
dx

= ∂
∂z

dy
dx

∂z
∂x0

= −h − b
2δ2

α − (αz + 2) tanh z
cosh2 z

(e.46)

∂
∂δ

dy
dx

= h − b
2δ2

1 + α(1 + 2z + e2z)/4
cosh2 z

+ z h − b
2δ2

α − (αz + 2) tanh z
cosh2 z

(e.47)

∂
∂α

dy
dx

= −h − b
8δ

1 + 2z + e2z

cosh2 z
(e.48)

∂
∂h

dy
dx

= −1 + α(1 + 2z + e2z)/4
2δ cosh2 z

(e.49)

∂
∂b

dy
dx

= 1 + α(1 + 2z + e2z)/4
2δ cosh2 z

. (e.50)

These expressions are all implemented in mtanh_profile() such that a gradient-
based optimizer may be used when fitting data with the mtanh mean function.

e.6 Representing prior distributions: the JointPrior
abstract class and its subclasses

e.6.1 The JointPrior abstract class

The JointPrior class represents a prior distribution for one or more hyperparame-
ters. A class diagram is given in figure e.7.

The attributes of the JointPrior class are:
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i The interval that bounds should represent. The default is one, which means that
bounds corresponds to the support of the prior distribution. Sometimes this
is not useful for using optimizers and so forth, so i can be set to a value less
than one to use a smaller central interval.

bounds The bounds of each hyperparameter. The interval this represents ismodified
by i. This will often be a getter method with a property decorator.

The methods of the JointPrior class are:

__call__() Evaluate the log-prior pdf for the values theta.

random_draw() Draw a sample from the prior distribution. Multiple samples can
also be requested at once.

sample_u() Use the inverse cdf to generate samples using variables distributed on
𝒰 (0, 1). This allows the use of techniques such as Latin hypercube sampling
[355], quasi-Monte Carlo sampling [291] or sparse quadrature [338] which may
require the problem be mapped to the unit hypercube for efficient implemen-
tation.

elementwise_cdf() Use the cdf to map samples from the distribution to samples
from 𝒰 (0, 1). This is the inverse operation of sample_u().

__mul__() Form the joint distribution for independent variables: fΘ1,Θ2
(θ1, θ2) =

fΘ1
(θ1)fΘ2

(θ2).

The following sections describe the specific distributions implemented, notably
including the derivatives of the pdfs needed to use a gradient-based optimizer.

e.6.2 Combining JointPrior instances: ProductJointPrior class

The ProductJointPrior class represents the product of two independent distribu-
tions:

fΘ1,Θ2
(θ1, θ2) = fΘ1

(θ1)fΘ2
(θ2). (e.51)

The log-pdf is then simply given by the sum of the log-pdfs of the two distributions:

ln fΘ1,Θ2
(θ1, θ2) = ln fΘ1

(θ1) + ln fΘ2
(θ2). (e.52)

By taking products of ProductJointPrior instances, prior distributions for many
independent hyperparameters can be constructed. All operations are simply the
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combination of the results from the two component JointPrior instances. When
using a gradient-based optimizer, the derivative of the log-pdf with respect to a given
hyperparameter θi is found by determiningwhich of the two component JointPrior
instances θi belongs to and evaluating only that JointPrior with the appropriate
keyword set.

e.6.3 Normal prior distributions: the NormalJointPrior class

The NormalJointPrior class represents theNormal distribution given in equation (1.36).
The derivative of the pdf with respect to x is

dfX(x)
dx

= 1
σ√2π

exp (−
(x − μ)2

2σ2 ) ⋅ −
x − μ
σ2

, (e.53)

which means that the derivative of the log-pdf is

d
dx

ln fX(x) =
dfX(x)/dx
fX(x)

= −
x − μ
σ2

. (e.54)

e.6.4 Log-normal prior distributions: the LogNormalJointPrior class

The LogNormalJointPrior class represents the log-normal distribution given in
equation (1.39). The derivative of the pdf with respect to x is

dfX(x)
dx

= −1
x
fX(x) + fX(x) ⋅ −ln(x/M)

σ2X
, (e.55)

so the derivative of the log-pdf is

d
dx

ln fX(x) =
dfX(x)/dx
fX(x)

= −1
x (1 + ln(x/M)

σ2 ) . (e.56)

e.6.5 Gamma prior distributions: the GammaJointPrior and
GammaJointPriorAlt classes

The GammaJointPrior class provides a direct implementation of the gamma distri-
bution whose pdf is given in equation (1.44). The derivative of the pdf with respect
to x is

dfX(x)
dx

= α − 1
x

fX(x) + fX(x) ⋅ −β, (e.57)
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so the derivative of the log-pdf is

d
dx

ln fX(x) =
dfX(x)/dx
fX(x)

= α − 1
1

− β. (e.58)

The alternate parameterization in terms of mode m and standard deviation σ given
in equation (1.48) and equation (1.49) is used in the GammaJointPriorAlt class to
provide a more convenient way of specifying gamma distributions with α ≥ 1.

e.6.6 Prior distributions for ordered values

e.6.6.1 Prior distribution for sorted, uniformly-distributed variables: the
SortedUniformJointPrior class

It is often required that values have some ordered relationship: the core covariance
length scale is longer than the edge covariance length scale or the knots of a spline
are nondecreasing, for instance. The SortedUniformJointPrior class accomplishes
this. This represents the information that some collection of variables {ti}Ni=1 are
sorted a ≤ t1 ≤ t2 ≤ … ≤ tN ≤ b and are uniformly distributed over some interval
[a, b]. When an instance is created, it is given the number of variables N and the
upper and lower bounds a and b, respectively, to use. To construct this distribution,
note that what is needed to draw from this distribution is N draws from 𝒰 (a, b)
which are then sorted. This distribution therefore represents the order statistics of N
samples from 𝒰 (a, b), for which it can be shown that

fT(t) =
{

N! / (b − a)N , a ≤ t1 ≤ t2 ≤ … ≤ tN ≤ b
0, otherwise

. (e.59)

e.6.6.2 Prior distribution for core and edge covariance length scales: the
CoreEdgeJointPrior class

The CoreEdgeJointPrior class imposes the constraint a ≤ x2 ≤ x1 ≤ bwhile giving
x1 a uniform marginal density and x2 a uniform conditional density. Consider the
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density

fX1
(x1) = 𝒰 (a, b) =

{
1/(b − a), a ≤ x1 ≤ b
0, otherwise

(e.60)

fX2|X1
(x2|x1) = 𝒰 (a, x1) =

{
1/(x1 − a), a ≤ x2 ≤ x1
0, otherwise

(e.61)

fX1,X2
(x1, x2) = fX2|X1

(x2|x1)fX1
(x1) =

{
1/((x1 − a)(b − a)), a ≤ x2 ≤ x1 ≤ b
0, otherwise

.

(e.62)

The smaller value x2 then has marginal pdf

fX2
(x2) = ∫

b

x1

1
(x1 − a)(b − a)

dx1 (e.63)

= 1
b − a

ln b − a
x2 − a

for a ≤ x2 ≤ b. (e.64)

The mean of this distribution is

E[x2] = ∫
b

a

x2
b − a

ln b − a
x2 − a

dx2 = 3a + b
4

. (e.65)

The conditional pdf of x1 is

fX1|X2
(x1|x2) =

fX1,X2
(x1, x2)

fX2
(x2)

= 1
(x1 − a) ln ((b − a)/(x2 − a))

for a ≤ x2 ≤ x1 ≤ b.

(e.66)

Early on, this was used for the prior distribution for the core and edge length scales
ℓ1 and ℓ2, respectively, of the Gibbs covariance kernel with tanh covariance length
scale function. The data seemed to prefer ℓ2 fairly close to ℓ1, which tended to
drive ℓ1 to higher values. Therefore, while this distribution is still included to allow
comparison with the old methods and to reproduce the results of older codes, its
use it not recommended – the independent gamma distribution prior distributions
used in the bulk of this thesis delivered much better performance.
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e.7 Miscellaneous classes and functions from the
gptools.utils submodule

e.7.1 Correcting SciPy’s Pochhammer symbol: the fixed_poch()
function

As noted in equation (b.27), the Pochhammer symbol is defined as

(a)n =
n−1

∏
k=0

(a + k). (e.67)

This is often converted to

(a)n = Γ(a + n)
Γ(a)

, (e.68)

which is in fact what SciPy’s implementation scipy.special.poch() does. But,
this is not valid when a is a negative integer. In order to correct this, fixed_poch()
implements the product in equation (e.67) directly.

e.7.2 Finding the derivatives of Kν(y1/2): the Kn2Der() function

Kn2Der() computes the nth derivative of Kν(y1/2) using equation (b.44). The deriva-
tives of Kν are found using the SciPy routine scipy.special.kvp() and the in-
complete Bell polynomial is computed with the routine incomplete_bell_poly()
which implements the recursive form of the incomplete Bell polynomial given in
equation (b.38) and equation (b.39).

e.7.3 Finding the derivatives of y1/2Kν(y1/2): the yn2Kn2Der() function

yn2Kn2Der() computes the nth derivative of y1/2Kν(y1/2) using equation (b.47) (but
without the normalizing constants). The outer sum is implemented using a loop
over index k and the inner sums are contained in Kn2Der(). If the value at y = 0
is required, the ν ∉ Z case is handled as described in section b.3.1. If ν ∈ Z, the
interpolation given in equation (b.72) is used.

The function also provides the ability to use the series expansion given in equa-
tion (b.51) within a specified distance from y = 0. If ν ∈ Z, the interpolation
described in equation (b.72) is again used.



428 Appendix e. gptools: software for general-purpose Gaussian process regression

e.7.4 Generating all of the partitions of a set: the
generate_set_partitions() function

In order to evaluate Faà di Bruno’s formula, it is necessary to generate all of the
partitions of the set of variables to differentiate with respect to. gptools includes
the generate_set_partitions() function which accomplishes this by using the
generate_set_partition_strings() function to produce the restricted growth
strings for all of the partitions of a set of size n. This is accomplished using algo-
rithm h of [474]. The generate_set_partitions() function then converts the
restricted growth strings to the form required by the ChainRuleKernel class.

e.8 The gptools.splines submodule

In order to provide a useful set of basis functions for the construction of both length
scale functions and input warping functions, gptools provides an implementation
of B-splines, M-splines and I-splines [321, 322, 489, 490, 497] in gptools.splines,
namely the function spev().

e.8.1 Mathematical preliminaries

These splines were introduced in section b.4, but the definitions are given again
here for convenience. The ith B-spline basis function of degree4 d is a piecewise
polynomial of degree d given by the recursion relation

Bi,0(x|t) =
{

1, ti ≤ x < ti+1
0, otherwise

(e.69)

Bi,d(x|t) =
x − ti
ti+d − ti

Bi,d−1(x|t) +
ti+d+1 − x
ti+d+1 − ti+1

Bi+1,d−1(x|t), (e.70)

where t is the complete knot set (including any edge knots). Note that given nt
internal knots with d repeated boundary knots at each end there will be nt + d − 1
non-zero basis functions. The M-spline basis functions

Mi,d(x|t) = d + 1
ti+d+1 − ti

Bi,d(x|t) (e.71)

are a different normalization of the B-spline basis functions: while the B-spline
basis functions are normalized such that ∑i Bi,d(x|t) = 1 for all x, the M-splines

4. Note that the literature on splines commonly defines B-splines in terms of “order” k = d + 1. This is
very unfortunate notation as it masks the polynomial degree of the spline, and so the clearer but less
conventional notation in terms of the polynomial degree d is used here.
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are normalized such that ∫∞
−∞ Mi,d(x|t) dx = 1 for all i. In spev(), however, the

recursion relation

Mi,0(x|t) =
{

1/(ti+1 − ti), ti ≤ x < ti+1
0, otherwise

(e.72)

Mi,d(x|t) = d + 1
d(ti+d+1 − ti)

((x − ti)Mi,d−1(x|t) + (ti+d+1 − x)Mi+1,d−1(x|t)) (e.73)

is used directly. The I-spline basis functions are integrals ofM-spline basis functions5:

Ii,d(x|t) = ∫
x

L
Mi,d−1(u|t) du, (e.74)

where L = min t is the start of the domain. In practice, however, the expression

Ii,d(x|t) =
⎧
⎪
⎨
⎪
⎩

0, i > j
∑j

m=i(tm+d+1 − tm)Mm,d(x|t)/(d + 1), j − d + 1 ≤ i ≤ j
1, i < j − d + 1

(e.75)

is used. Here, j is the index in t for which tj ≤ x < tj+1. Because the M-spline basis
functions are always positive, the I-spline basis functions will always be monotonic.
Because the I-splines are given as integrals of Mi,d−1(x|t), there will only be nt +d−2
non-zero basis functions for an I-spline of degree d. The derivatives of the I-splines
are obviously

dIi,d(x|t)
dx

= Mi,d−1(x|t). (e.76)

The derivatives of the B-spline basis functions are [321]

dBi,d(x|t)
dx

= d (
Bi,d−1(x|t)
ti+d − ti

−
Bi+1,d−1(x|t)
ti+d+1 − ti+1 ) = Mi,d−1(x|t) − Mi+1,d−1(x|t),

(e.77)

which means that the derivatives of the M-spline basis functions are

dMi,d(x|t)
dx

= d
dx (

d + 1
ti+d+1 − ti

Bi,d(x|t)) = d + 1
ti+d+1 − ti

(Mi,d−1(x|t) − Mi+1,d−1(x|t)).

(e.78)

5. The conventional notation [490] is to have the I-spline basis function of “order” k be Ii,k(x|t) =
∫x
L Mi,k(u|t) du. This is a piecewise polynomial of degree k, thus adding further confusion to the

difference between spline order and polynomial degree. Here, we refer to Ii,d(x|t) by its polynomial
degree d.
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Note that the ultimate goal, once the basis functions have been computed, is to obtain

y(x) =
nt+d−2

∑
i=0

CiSi,d(x|t), (e.79)

where Si,d(x|t) is one of Bi,d(x|t), Mi,d(x|t) or Ii,d(x|t).

e.8.2 Software implementation

The spev() function takes as arguments an array containing the internal knots
tint, an array containing the spline coefficients C, the polynomial degree d and an
array containing the grid to evaluate the spline on x ∈ Rnx . An optional argument
allows the derivative order n to be selected. In addition, the covariance matrix Σ =
cov[C,C] for the coefficients can be specified as a 2d array to produce an uncertainty
estimate. If the coefficients are not correlated, then the variances σ2 = var[C] may
be given as a 1d array instead. Boolean keywords are provided to select between
B-splines (the default), M-splines and I-splines. The inputs must obey the following
requirements:

• tint has nt elements which are in nondecreasing order.

• C has nt + d − 1 elements. Note that for I-splines there are only nt + d − 2
nontrivial basis functions. The first element of C, C1, provides a constant
offset in this case.

• d is a non-negative integer. The cubic spline with d = 3 is standard in practice,
but spev() can handle any polynomial degree.

• x may have any number of elements which can be given in any order. In
addition, the extrema of x should satisfy min x ≥ min tint, max x ≤ max tint.
These conditions, however, are not enforced and values outside of the knots
are silently set to zero.

• Σ, if provided, should either be a 2d array with shape (nt + d − 1, nt + d − 1)
or a 1d array with nt + d − 1 elements.

• n, if provided, should be a non-negative integer.

To set the behavior at the edges, d boundary knots are appended to each end of tint
to form the complete knot set t. In other words, for d = 3,

t = [t1, t1, t1, t1, t2, … , tnt−1, tnt , tnt , tnt , tnt]. (e.80)
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The derivatives are handled recursively using equation (e.76) through equation (e.78).
If n > d, all zeros are returned. For the I-spline basis functions, equation (e.76) is
implemented by dropping the constant offset C1 from C and calling spev() with
the same tint, dnew = d − 1, nnew = n − 1, the M-spline keyword set to True and
the I-spline keyword set to False. For the B-spline basis functions, note from equa-
tion (e.77) that a given M-spline basis function Mi,d−1(x|t) appears in the derivative
of equation (e.79) with coefficient −Ci−1 + Ci. This is implemented by forming a
new coefficient array

Cnew = −C1∶nt+d−2 + C2∶nt+d−1 (e.81)

and calling spev() with the same tint, dnew = d − 1, nnew = n − 1 and the M-spline
keyword set to True. This means that M-spline basis function Mi,d−1(x|t) will have
coefficient −Ci+Ci+1. The indexing looks a little strange, but it accounts for both the
fact that there is no C0 and the fact that there is one fewer non-trivial basis function
for dnew = d − 1, which means that the indices i for d − 1 are shifted by one. For
the M-spline basis functions, note from equation (e.78) that a given basis function
Mi,d−1(x|t) appears in the derivative of equation (e.79) with coefficient

− d + 1
ti+d − ti−1

Ci−1 + d + 1
ti+d+1 − ti

Ci. (e.82)

This is implemented by forming a new coefficient array

Cnew = (d + 1)
(

−
C1∶nt+d−2

td+2∶nt+2d−1 − t1∶nt+d−2
+

C2∶nt+d−1

td+3∶nt+2d − t2∶nt+d−1)
, (e.83)

where the division takes place elementwise, and again calling spev() with the same
tint, dnew = d − 1, nnew = n − 1 and the M-spline keyword set to True. By imple-
menting the derivatives in this manner, derivatives of any order can be computed
recursively.

To evaluate the I-spline basis functions, the M-spline basis functions are com-
puted before applying equation (e.75). To compute the B- orM-spline basis functions,
a 3d array B is created, where B has shape (d+1, nt +2d−1, nx). In other words, the
first dimension of B runs through the increasing polynomial degrees d (starting at
d = 0), the second dimension runs through the basis function indices i and the third
dimension runs through all of the spatial points. The zero degree components are
evaluated through direct application of equation (e.69) and equation (e.72) by loop-
ing from i = d (where the first set of repeated knots ends) to i = nt +d−2 (where the
second set of repeated knots begins). To obtain results which are continuous at the
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right hand side of the domain, the zero degree basis function for i = nt +d−2 is mod-
ified to be nonzero over ti ≤ x ≤ ti+1 instead of ti ≤ x < ti+1. Then the code loops
over polynomial degree from dl = 1 to d. For each dl, i loops from d−dl to d+nt −2,
adding terms according to either equation (e.70) or equation (e.73). The B- or M-
spline basis functions are then given as a function of x in Bd+1,1∶nt+d−1. If an I-spline
is requested, equation (e.75) is implemented by looping over i from 0 to nt + d − 2.
For each value of i, a loop from m = i to m = nt + d − 2 is performed, adding terms
according to equation (e.75). The final result is then found by taking the dot product
y = C ⋅Bd+1,1∶nt+d−1. If a covariance matrix for C is provided, the covariance matrix
for y is found from the matrix product cov[y] = Bd+1,1∶nt+d−1ΣB

T
d+1,1∶nt+d−1.



f
profiletools: an open-source
Python package for handling
profile data

f.1 Package overview

profiletools is a Python package designed to make working with profile data
easier. The source code is available in [308] and the user documentation is available
in [309]. The objective when developing profiletools was to provide a set of
helper functions to load the data from multiple diagnostics, put the data into the
same coordinate system, perform time averaging and pass the combined data arrays
to gptools to be fit with Gaussian process regression. The intent of providing a data
structure for multivariate data is similar to the goal of the Python package pandas
[536, 537], but profiletools necessarily uses a more flexible data model in order to
be able to fully interface with gptools.

The core class of profiletools is the Profile class, described in section f.2. Ex-
tensions to handle plasma data are provided by the BivariatePlasmaProfile class,
described in section f.3. If a different subclass of BivariatePlasmaProfile were
provided for each diagnostic, merging data sets would yield an object whose class was
not necessarily representative of its contents. Instead, each of the functions for load-
ing data described in section f.4 returns an instance of BivariatePlasmaProfile
loaded with the requested diagnostic’s data. A key component of profiletools is
the flexibility in selecting how data are averaged, a process described in detail in
section f.5. An example of loading the temperature profile and finding the map esti-
mate for a Gaussian process with the Gibbs covariance kernel with tanh covariance
length scale function is given in code listing f.1.
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Code Listing f.1: Example showing to use of profiletools to fit the Te profile.
The data are fit as a function of r/a and are averaged over the window 1 s ≤ t ≤ 1.1 s.
The core and edge Thomson scattering data are loaded separately from the two
grating polychromator diagnostics because the Thomson scattering data include
uncertainty estimates and hence can use weighted averaging. The create_gp()

method defaults to using a Gibbs covariance kernel with tanh covariance length
scale function, so the covariance kernel does not need to be specified.

1 import profiletools

2 p = profiletools.TeTS(1101014006, t_min=1.0, t_max=1.1, abscissa='r/a')

3 p.time_average(weighted=True)

4 p_2 = profiletools.Te(

5 1101014006, t_min=1.0, t_max=1.1, abscissa='r/a', include=['GPC', 'GPC2']

6 )

7 p_2.time_average(weighted=False)

8 p.add_profile(p_2)

9 p.create_gp()

10 p.find_gp_MAP_estimate()

f.2 The profiletools data model and the Profile class

A class diagram of the profiletools.core.Profile class is given in figure f.1. The
independent variables X are stored in the n×D array X and the corresponding values
of the dependent variable y are stored in y. This approach is similar to how a sparse
matrix is stored: X has a row for each data point which holds that point’s coordinates.
This allows data of arbitrary dimensionality which were not taken on a regular grid
to be stored. The uncertainties in y are stored in err_y and the uncertainties in
X are stored in err_X. The attribute channels keeps track of which points should
logically be grouped together when performing averaging. When averaging along a
given dimension, all points with the same values in the other columns of channels
are grouped together.

A Profile instance can also keep track of transformed quantities. In order to
keep the data structure for non-transformed quantities as clear and fast as possible,
these are stored separately in the transformed array. Each channel of a diagnostic
which takes transformed measurements is stored as an instance of the Channel class,
described in section f.2.3.

The remaining attributes of the Profile class are:

X_dim The number of dimensions in X, D.

X_units List of strings containing the units of each dimension of X.
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Profile

y : array, (n,)
X : array, (n, D)
err_y : array, (n,)
err_X : array, (n, D)
channels : array, (n, D)
X_dim : int
X_units : list of str
y_units : str
X_labels : list of str
y_label : str
weightable : bool
transformed : array of Channel, (N ,)
gp : GaussianProcess

__init__() : void
add_data(X : array, (n, D), y : array, (n,)) : void
add_profile(other : Profile) : void
drop_axis(axis : int) : void
keep_slices(axis : int, vals : array, (M,)) : void
average_data() : void
plot_data() : AxesSubplot
remove_points(conditional : array of bool, (n,)) : tuple of arrays
remove_outliers() : tuple of arrays
remove_extreme_changes() : tuple of arrays
create_gp() : void
find_gp_MAP_estimate() : tuple
plot_gp() : AxesSubplot or tuple
smooth(X : array, (n∗, D)) : array, (n∗,) or tuple or dict
write_csv(filename : str) : void

Figure f.1: Class diagram for the Profile class. Notice that most of the methods
return void: the methods mutate the Profile instance in place.

y_units String containing the units of the dependent variable y.

X_labels List of strings containing the names of each dimension of X.

y_label String containing the name of the dependent variable y.

weightable If True, weighted averaging can be used.

gp The GaussianProcess instance created to fit the data.
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f.2.1 Automatically removing suspicious data points

In order to enable automated first-cut data analysis, the Profile class provides two
very basic forms of outlier detection. The remove_outliers() method is a wrapper
to apply the very basic form of Gaussian process-based outlier detection described in
section e.3.2.4. The remove_extreme_changes()method implements an even more
basic form of outlier detection based on the assumption that the profile is smooth
and has been sampled densely: if a point is more than a given number of standard
deviations (the default is 10) off from its neighbor, it will be removed. The user can
choose whether a point must be off relative to both of its neighbors or just one of its
neighbors.

f.2.2 Creating a Gaussian process

The create_gp() method creates a GaussianProcess instance containing the data
from the Profile instance and stores it in the gp attribute. The user may specify a
covariance kernel explicitly by passing a Kernel instance or with a string. By default
the se covariance kernel is used and reasonable bounds for each of the hyperpa-
rameters are chosen by looking at the data: σf is taken to lie within the interval
[0, 5max y], covariance length scales for each dimension d are taken to lie within
the interval [0, 5(max xd − min xd)] where xd is the dth column of X.

f.2.3 Keeping track of transformed quantities: the Channel class

profiletools uses the Channel class to keep track of transformed quantities. A
class diagram is given in figure f.2. The Channel class stores n measurements of the
transformed quantity y in the attribute y. The n × nQ transformation matrix T is in
the attribute T and the quadrature points X are in the 3d array X. By storing the data
this way, each measurement y in y has associated with it a 1 × nQ transformation
matrix T and a nQ × D matrix of D-dimensional quadrature points X. This is in
contrast to the block diagonal approach used for combining transformation matrices
in gptools, and was done to make it easier to average the transformation matrix
when averaging the data along a given dimension.

f.3 Extensions to handle plasma profile data: the
BivariatePlasmaProfile class

The BivariatePlasmaProfile class represents data from a plasma physics profile
measurement. The word “bivariate” in the name refers to data which are a function
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Channel

y_label : str
y_units : str
X : array, (n, nQ, D)
y : array, (n,)
err_X : array, (n, nQ, D)
err_y : array, (n,)
T : array, (n, nQ)

__init__(X : array, (n, nQ, D), y : array, (n,)) : void
keep_slices(axis : int, vals : array, (M,)) : bool
average_data() : void
remove_points(conditional : array of bool, (n)) : tuple

Figure f.2: Class diagram for the Channel class.

of space and time; the class still supports data of arbitrary dimensionality. By conven-
tion, time should always be the first column in X (referred to as “axis zero” because
Python uses zero-based indexing). Then, an arbitrary number of other (typically
one to three spatial) dimensions may follow. A class diagram is given in figure f.3.

The new attributes of the BivariatePlasmaProfile class are:

shot The shot number. If the add_profile() method is used to combine two
instances from different shots, a warning will be produced.

efit_tree The Equilibrium instance to use for coordinate mapping.

abscissa The spatial coordinate system to use. profiletools understands all of
the coordinate systems which eqtools supports.

times The specific time points used when only keeping specific times.

t_min Lower bound of time window which was averaged over.

t_max Upper bound of time window which was averaged over.

The following methods are modified relative to how they are implemented in
the base Profile class:

drop_axis() Stores t_min and t_max if the axis to be dropped corresponds to time.

add_profile() Warns the user if the shot number of the two instances to be com-
bined do not match. Ensures the abscissa of the two profiles matches.
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Profile

BivariatePlasmaProfile

shot : int
efit_tree : Equilibrium
abscissa : str
times : array, (N ,)
t_min : float
t_max : float

remake_efit_tree() : void
convert_abscissa(new_abscissa : str) : void
time_average() : void
drop_axis(axis : int) : void
keep_times(times : array, (N ,)) : void
add_profile(other : BivariatePlasmaProfile) : void
remove_edge_points() : void
constrain_slope_on_axis() : void
constrain_at_limiter() : void
remove_quadrature_points_outside_of_limiter() : void
get_limiter_locations() : tuple
create_gp() : void
compute_a_over_L(X : array, (n∗,)) : tuple or dict
_get_efit_times_to_average() : array of int, (N ,)
_make_volume_averaging_matrix() : tuple
compute_volume_average() : float or tuple
compute_peaking() : float or tuple

Figure f.3: Class diagram for the BivariatePlasmaProfile class. Only the meth-
ods and attributes which are new ormodified in the subclass are shown, see figure f.1
for the full details of the superclass, Profile.
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create_gp() Defaults to using the Gibbs covariance kernel with tanh covariance
length scale function. Will also call the constrain_slope_on_axis() and
constrain_at_limiter() methods automatically unless the user tells the
method to not do so.

When the data have been reduced through time-averaging, one of either times
or the pair t_min, t_max is stored such that quantities from themagnetic equilibrium
reconstruction can be computed over the appropriate time window when generat-
ing limiter constraints and computing a/Ly. The _get_efit_times_to_average()
method gets the indices to use when performing a time average. If the times at-
tribute is present, it simply finds the indices corresponding to the times included in
the profile. If the times attribute is not present, it first checks to see if t_min is equal
to t_max. If so, it simply finds the point in the timebase of efit_tree nearest to
that single time point. Otherwise, it finds the indices in the timebase of efit_tree
which correspond to times tmin ≤ t ≤ tmax.

f.3.1 Converting coordinates: the convert_abscissa()method

The convert_abscissa() method converts the spatial part of the independent
variables X into a new coordinate system. If the profile has not yet been time-
averaged, the conversion is done directly by using the appropriate conversionmethod
of efit_tree. If the profile has already been time-averaged, the conversion is
performed at each of the times returned by the _get_efit_times_to_average()
method. The average is put into X and the standard deviation is put into err_X.

f.3.2 Imposing constraints: the constrain_slope_on_axis() and
constrain_at_limiter()methods

Both of the constraint methods assume that a GaussianProcess instance has already
been created with the create_gp() method. The constrain_slope_on_axis()

method imposes a zero-slope constraint at the magnetic axis. If the abscissa is
Rmid this is accomplished by fetching the location of the magnetic axis from the
associated Equilibrium instance. For normalized coordinates, the location is simply
ρ = 0. The constrain_slope_at_limiter() method imposes an approximate
zero slope and value constraint outside of the location of the limiter. It uses the
get_limiter_locations() method to fetch the location of the gh limiter from the
tree. Because this location is not stored in the tree for some older shots, Rgh = 0.91m
is used when the data are not available. The method then adds to the associated
GaussianProcess instance several linearly-spaced points at and just outside the
location of the limiter for which the slope and value should be approximately zero.
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f.3.3 Computing gradient scale lengths: the compute_a_over_L()
method

The compute_a_over_L() method uses the GaussianProcess instance gp to com-
pute the gradient scale length according to the analysis described in section 2.3.7.
The method assumes that the data have already been time-averaged. The method
first uses the GaussianProcess instance’s predict() method to compute the mean
values of y, y′ = dy/dρ and possibly y′′ = d2y/dρ2 along with their covariance
matrix, where ρ is whatever coordinate is specified by abscissa. The variances in
these quantities, σ2y , σ2y′ and σ2y′′ are extracted from the diagonal of the covariance
matrix and the covariances σy,y′ , σy,y′′ and σy′,y′′ are extracted from the relevant
off-diagonal elements. The gradient scale length is then computed from

a
Ly

= −a
dy/dr
y

, (f.1)

where the minus sign is used in place of the absolute value under the assumption
that profiles will typically be monotonically decreasing. But y may have been fit as a
function of a coordinate ρ other than Rmid, r or r/a. So, what is used instead is

= −1
y

dy
dρ

dρ
d(r/a)

= −
y′ρ′

y
, (f.2)

where y′ = dy/dρ and ρ′ = dρ/d(r/a). Applying the uncertainty propagation equa-
tion to this yields an expression for the variance
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While in general one might expect there to be correlations between ρ′ and the other
quantities, these are not computed at present. When normalized second derivatives
are required, they are given by equation (2.73) and equation (2.74):

a
L∇y

=
ad2y/dr2

dy/dr
=

d2y/d(r/a)2

dy/d(r/a)
(f.5)

= (
d2y
dρ2 (

dρ
d(r/a) )

2
+

dy
dρ

d2ρ
d(r/a)2)

1
dy/dρ ⋅ dρ/d(r/a)

(f.6)

=
y′′ρ′

y′ +
ρ′′

ρ′ (f.7)
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where y′ = dy/dρ, y′′ = d2y/dρ2, ρ′ = dρ/d(r/a) and ρ′′ = d2ρ/d(r/a)2. In general,
correlations between ρ′, ρ′′, y′ and y′′ would be expected, but these are not computed
at present.

Note that for the special case that ρ = r/a the coordinate transformation terms
simplify to ρ′ = 1, ρ′′ = 0 with variance and covariance zero. For the special
case ρ = Rmid = a(r/a) + R0, the terms simplify to ρ′ = a, σ2ρ′ = var[a], ρ′′ = 0,
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σ2ρ′′ = 0, σρ′,ρ′′ = 0. In order to account for the uncertainty corresponding to the
time-variation of the quantities ρ′ and ρ′′, the _get_efit_times_to_average()

method is used to determine which efit time points are included in the time average.
For the ρ = Rmid case the sample mean and variance of a are used for ρ′ and σ2ρ′ .
For coordinates other than r/a and Rmid, the method loops over the times to include.
For each time, it forms a grid of r/a from zero to two with three times as many points
as efit used for its radial grid. It then converts this grid to ρ using the rho2rho()
method of the associated Equilibrium instance. A cubic interpolating spline is then
fit to ρ = f (r/a). This spline can then be evaluated at the r/a points a/Ly is to be
computed at in order to obtain the derivatives

ρ′ =
dρ

d(r/a)
, ρ′′ =

d2ρ
d(r/a)2

. (f.14)

The means, variances and covariances of ρ′ and ρ′′ are then computed from the
sample statistics.

Use of the expressions above to compute the variances can be overridden us-
ing the full_MC keyword, which is also passed to the predict() method of the
GaussianProcess instance. When this is in effect, the predict() method returns
a number of Monte Carlo samples which have potentially been filtered through a
rejection function. Equation (f.2) (and possibly equation (f.7) and equation (f.11))
is then evaluated for each sample and the sample mean and standard deviation are
computed. In this case the uncertainties from the time-variation of ρ′ and ρ′′ are
not taken into account, but these are usually found to be quite small in practice.

f.3.4 Computing volume averages: the compute_volume_average()
method

The compute_volume_average() method computes the volume average ⟨y⟩vol of
the profile and its uncertainty using the steps described in section 2.3.9.3. The
quadrature weights are computed using the _make_volume_averaging_matrix()
method. This method can operate in one of two ways. If no quadrature points
are supplied, an nQ point grid which is uniformly-spaced in Vn is generated and
converted to the appropriate coordinate system defined by the abscissa attribute.
The weights are then simply computed using the trapezoid rule. Otherwise, explicit
quadrature points may be provided. These are converted to Vn and the weights are
again computed from the trapezoid rule, but this time accounting for the nonuniform
spacing. These quadrature points and quadrature weights can then be passed to the
predict() method of the associated GaussianProcess instance.
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f.3.5 Computing peaking factors: the compute_peaking_factor()
method

The compute_peaking_factor() method computes the peaking factor defined in
equation (2.68). The method first uses the _make_volume_averaging_matrix()

method to produce the quadrature points and weights needed to compute the
volume average ⟨y⟩vol, then combines this with a single point at ψn = 0.2 (converted
to the appropriate coordinate system) to obtain the covariance necessary to evaluate
the uncertainty in equation (2.69).

f.4 Functions for retrieving Alcator C-Mod profiles

The profiletools.CMod submodule contains a variety of functions to load profile
data from the Alcator C-Mod MDSplus tree. These act as functions which return
BivariatePlasmaProfile instances so that all of the profiles for a given quantity
end up having the same class so that the object classes still make sense after a method
such as add_profile() has been used. Each of the functions include basic logic to
reject points which have been flagged as bad.

f.4.1 The electron density profile, ne

f.4.1.1 The core Thomson scattering system: neCTS()

The neCTS() function loads the data from the core Thomson scattering system. A
point is removed if any of the following conditions are met, obtained from the rules
the Thomson scattering system uses to flag bad points:

• The uncertainty is scipy.nan (not-a-number) or ±scipy.inf (infinite).

• The uncertainty is exactly 0.0, 1.0 × 1020 m−3 or 2.0 × 1020 m−3.

• The value is exactly 0.0 and the remove_zeros keyword is True.

f.4.1.2 The edge Thomson scattering system: neETS()

The neETS() function loads the data from the edge Thomson scattering system. A
point is removed if any of the following conditions are met:

• The value in the “pointmask” node in the edge Thomson scattering tree is 0.

• The uncertainty is scipy.nan (not-a-number) or ±scipy.inf (infinite).
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• The uncertainty is exactly 0.0, 1.0 × 1020 m−3 or 2.0 × 1020 m−3.

• The value is exactly 0.0 and the remove_zeros keyword is True.

f.4.1.3 The two-color interferometer: neTCI() and neTCI_old()

The neTCI() function loads the data from the two-color interferometer and was
implemented as part of an undergraduate research project. This function uses a
fixed set of quadrature points shared between all of the tci chords to reduce the
computational overhead of evaluating the Gaussian process. The quadrature weights
are computed using the TRIPPy code [362]. Unfortunately, the function is not robust
to changes in the tci chord locations and so is not reliable for older data.

The neTCI_old() function is the initial implementation of tci data in profile-

tools. Each chord uses a set of quadrature points uniformly spaced along the chord,
and the quadrature weights are computed using the trapezoid rule. While this tech-
nique is more computationally expensive than that used for neTCI(), it is robust to
changes in the tci chord locations.

In either case, points are only retained for which the line-integrated density is
greater than 1017 m−2.

f.4.1.4 The scrape-off layer reflectometer: neReflect()

The neReflect() function loads the data from the scrape-off layer reflectometer
attached to the lower hybrid launcher. Points for which the value is exactly 0.0 are
removed. Care needs to be taken when using data from this diagnostic as most of the
scatter in a given channel over a given time window tends to be in the independent
variable rather than the dependent variable.

f.4.2 The electron temperature profile, Te

f.4.2.1 The core Thomson scattering system: TeCTS()

The TeCTS() function loads the data from the core Thomson scattering system. A
point is removed if any of the following conditions are met:

• The uncertainty is scipy.nan (not-a-number) or ±scipy.inf (infinite).

• The uncertainty is exactly 0.0 or 1.0 keV.

• The value is exactly 0.0 and the remove_zeros keyword is True.
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f.4.2.2 The edge Thomson scattering system: TeETS()

The TeETS() function loads the data from the edge Thomson scattering system. A
point is removed if any of the following conditions are met:

• The value in the “pointmask” node in the edge Thomson scattering tree is 0.

• The uncertainty is scipy.nan (not-a-number) or ±scipy.inf (infinite).

• The uncertainty is exactly 0.0, 0.5 keV or 1.0 keV.

• The value is exactly 0.0 and the remove_zeros keyword is True.

• The value is exactly 0.0 and the uncertainty is exactly 0.029 999 999 329 447 746 keV.
This flag appears to have been in use for older data.

f.4.2.3 The electron cyclotron emission diagnostics: TeGPC(), TeGPC2(),
TeFRCECE() and TeMic()

The TeGPC() function loads the data from the first grating polychromator electron
cyclotron emission diagnostic, the TeGPC2() function loads the data from the second
grating polychromator electron cyclotron emission diagnostic, the TeFRCECE() func-
tion loads the data from the Fusion Research Center electron cyclotron emission
diagnostic and the TeMic() function loads the data from the Michelson interfer-
ometer diagnostic. In all cases, points for which the value is less than 0.15 keV are
rejected.

f.5 Averaging schemes and their interpretations

Often profile data will bemeasured atmultiple times. The usermust then decide how
to utilize this information in a statistically reasonable way. The most basic approach
would be to fit a profile to each time slice, in which case the keep_times() method
may be used to select the specific time point to retain. Assuming the uncertainties on
the input data are correct, the 1d fits and their uncertainty envelopes then represent
an estimate of the temporal evolution of the profile, albeit without having accounted
for the correlation between nearby time points. If a summary of the behavior over
a steady-state period is required, the user must then consider the same questions
about averaging the individual fits together as are asked about the data themselves
below.

Another option is to use drop_axis(0) to drop the temporal information (recall
that axis number zero is time in a BivariatePlasmaProfile which has not yet
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been time-averaged) and include all of the points in the fit with their individual
uncertainty estimates. This is equivalent to the assumption that each time slice
represents an independent sample from the same underlying distribution, such that
each point in a given channel represents a sample yi ∼ 𝒩 (μ, σ2i ). The Gaussian
process itself then combines all of the points to arrive at a well-constrained estimate
of the single, underlying mean curve μ(x) which the data represent noisy samples of.
As more points are added, the uncertainty in the Gaussian process will tend towards
zero. This would not be a valid approach if the profile is varying from time-to-time
in a manner which needs to be represented in the uncertainty envelope of the mean
curve, such as undergoing sawtooth oscillations or if the mean of the profile itself is
exhibiting a stochastic variation which is not included in the diagnostic uncertainty
estimates. Furthermore, this approach is very computationally expensive: computing
the Cholesky decomposition of the covariance matrix has asymptotic complexity
𝒪(n3) where n is the number of observations, so incorporating data from many time
points will make the Gaussian process much more computationally expensive to
work with.

The typical use case for profiletools therefore requires averaging the data over
a given time window: all of the samples in a given channel are combined into a single
point with a single uncertainty estimate. profiletools provides a number of ways
to perform this averaging; the user is left to make a reasonable choice in line with
the statistical interpretations outlined in this section. In order to provide a consis-
tent interface for averaging both local and transformed quantities, profiletools
carries out all of its averaging with the profiletools.core.average_points()

function. The average_data() method of the Profile class loops over all of the
unique channels and applies average_points() to them one-by-one. When calling
the average_points() method, the user provides the independent variables X as
either an n × D or n × nQ × D array, the dependent variables y as an n element array,
the uncertainties in the independent variables σX in an array the same shape as X,
the uncertainties in the dependent variables σy in an array with the same shape as y
and possibly the transformation matrix T as an n × nQ array. The result is a single
estimate of y ± σy, x ± σx and possibly T, where y, σy ∈ R; x, σx ∈ RD orRnQ×D and
T ∈ RnQ . The user can then make the following choices about how the averaging
proceeds, which are described in detail in the following sections:

• Whether or not to use robust estimators (median, interquartile range) instead
of standard estimators (mean, standard deviation).

• Whether or not to use weighted estimators.

• What method to use for computing the uncertainty in y.
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• What method to use for computing the uncertainty in X.

In all cases the resultant summary is in terms of the mean and standard deviation
of a normal distribution which best fits (in the sense to be described below) the
observed distribution of the data. The assumption that the noise follows the normal
distribution can be checked by making a probability (“Q-Q”) plot of the quantiles of
the data against the quantiles of the normal distribution [401].

f.5.1 Robust versus standard estimators

As described in section 1.4.3.2, the mean and standard deviation are both non-robust
estimators: a single bad point may drag the estimate arbitrarily far from the rest of
the data. In order to account for the possibility of outliers in the data, the user can
opt to use the sample median as an estimate of the center of the data and the sample
interquartile range as an estimate of the width (i.e., uncertainty) of the distribution. If
the interquartile range is used, the uncertainty is expressed as the standard deviation
of the normal distribution having the observed interquartile range: σ ≈ iqr/1.349
(see equation (1.37)). This has the implication that the underlying distribution of
the data is in fact normal, but that there are one or more outliers which would have
corrupted the calculation of the sample mean and standard deviation.

f.5.2 Weighted versus non-weighted estimators

When diagnostic uncertainty estimates are provided, this information can be used
to obtain a better estimate of the sample statistics by letting points for which there
is a smaller uncertainty estimate have more influence on the estimates of the mean
and uncertainty.

f.5.2.1 One view of weighted and unweighted estimators: the empirical
distribution and its properties

In order to provide an intuitive understanding of the types of averaging supported
by profiletools, this section obtains expressions for the unweighted and weighted
estimators using arguments based on the empirical distribution of the data.

f.5.2.1.1 Unweighted estimators obtained from the empirical distribution A
sample yi of y in a given channel can be thought of as being obtained from the
probability distribution described by the empirical cdf

̂FY (y) = 1
n

n

∑
i=1

I(yi ≤ y), (f.15)



448 Appendix f. profiletools: an open-source Python package for handling profile data

where I(yi ≤ y) is an indicator function. This cdf jumps up by 1/n at each measure-
ment. The sample median M is simply the point at which ̂FY (y) = 1/2. If there is an
even number of points, the median is taken to be the midpoint between the points
which bracket ̂FY (y) = 1/2. The first and third quartiles of the same are obtained in
the same way to allow an estimate of the sample interquartile range. The derivative
of the empirical cdf yields the empirical pdf, which has the form

̂fY (y) = 1
n

n

∑
i=1

δ(yi − y), (f.16)

where

δ(x) =
{

∞, x = 0
0, otherwise

(f.17)

is the Dirac delta function. The mean of this distribution is

E[y] = ∫
∞

−∞
y ̂fY (y) dy (f.18)
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y 1
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yi = y, (f.21)

which is the samplemean as given in equation (1.28). The variance of this distribution
is

var[y] = ∫
∞

−∞
(y − E[y])2 ̂fY (y) dy (f.22)

= ∫
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−∞
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∫
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(y − E[y])2δ(yi − y) dy (f.24)

= 1
n

n
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i=1

(y − E[y])2, (f.25)
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which is similar to the sample variance given in equation (1.29), but lacks the n/(n−1)
factor which corrects for the bias which is introduced by using the data to estimate
E[y]. Therefore, what is used in practice is

s2 = 1
n − 1

n

∑
i=1

(y − y)2. (f.26)

f.5.2.1.2 Weighted estimators obtained from the empirical distribution The
sample percentiles described in section 1.4.3.1 as well as the empirical distribution of
the previous section treat all of the data as being equally reliable. When some data
in a given channel are more reliable than others, however, it is useful to construct a
weighted empirical cdf which accounts for this. Instead of jumping by 1/n at each
point, the weighted empirical cdf jumps by 1/(σ2i ∑n

j=1 1/σ2j ) at each point:

̂FY ,w(y) = 1
∑n

i=1 1/σ2i

n

∑
i=1

I(yi ≤ y)
σ2i

. (f.27)

The weighted quartiles are then obtained from this cdf as before, an operation
which is implemented by the scoreatpercentilew() function in profiletools.
The weighted empirical pdf is

̂fY ,w(y) = 1
∑n

i=1 1/σ2i

n

∑
i=1

δ(yi − y)
σ2i

. (f.28)

The mean of this distribution is

E[y] = ∫
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∞
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=
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i=1 yi/σ
2
i

∑n
i=1 1/σ2i

= yw, (f.32)

which is known as the weighted sample mean. The weighted sample mean is imple-
mented in the meanw() function provided by profiletools. The variance of the
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weighted empirical distribution is

var[y] = ∫
∞

−∞
(y − E[y])2 ̂fY ,w(y) dy (f.33)
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Similar to the unweighted sample variance, this estimator is biased when the data
are used to estimate the mean. It can be shown that

s2w =
∑n

i=1(yi − yw)2/σ2i

∑n
i=1 1/σ2i −

∑n
i=1 1/σ4i

∑n
i=1 1/σ2i

(f.37)

is a consistent, unbiased estimator for the weighted sample variance. This is imple-
mented in the varw() function in profiletools.

f.5.2.2 A Bayesian view of weighted and unweighted estimators

This section attempts to use a purely Bayesian framework to make it clear what
the probabilistic assumptions underlying the estimators discussed above are. This
section closely follows the development section 3.3 of [283].

f.5.2.2.1 Unweighted, non-robust estimators as Bayesian parameter estimates
Consider a set of n samples y where each element yi ∼ 𝒩 (μ, σ2). The likelihood is

fY|M,Σ(y|μ, σ) =
n

∏
i=1

1
√2πσ

exp (−
(yi − μ)2

2σ2 ) (f.38)

= 1
(2π)n/2σn

exp
(

− 1
2σ2

n

∑
i=1

(yi − μ)2
)

. (f.39)
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Assume the following (improper1) prior density for μ and σ :

fM,Σ(μ, σ) ∝
{

1, σ ≥ 0
0, otherwise

. (f.40)

The posterior pdf for μ and σ ≥ 0 given the data is then

fM,Σ|Y (μ, σ|y) ∝ 1
(2π)n/2σn

exp
(

− 1
2σ2

n

∑
i=1

(yi − μ)2
)

. (f.41)

First, find the marginal posterior density for μ:

fM|Y (μ|y) ∝ ∫
∞

0

1
(2π)n/2σn

exp
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− 1
2σ2

n

∑
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(yi − μ)2
)

dσ. (f.42)

Make the substitution t = 1/σ , dt = −1/σ2:

= ∫
∞

0

tn−2

(2π)n/2 exp
(

− t2

2

n

∑
i=1

(yi − μ)2
)

dt. (f.43)

Now make the substitution u = t√∑n
i=1(yi − μ)2/2, du = dt√∑n

i=1(yi − μ)2/2:

= 1
(2π)n/2 (

n

∑
i=1

(yi − μ)2/2
)

−(n−1)/2

∫
∞

0
un−2e−u2 dt. (f.44)

Finally, drop the constant factors to obtain

∝
(

n

∑
i=1

(yi − μ)2
)

−(n−1)/2

. (f.45)

Therefore, the marginal posterior log-pdf for μ is

ln fM|Y (μ|y) = −n − 1
2

ln
(

n

∑
i=1

(yi − μ)2
)

. (f.46)

1. An improper prior distribution is a prior distribution which cannot be normalized. The use of such a
prior distribution is contingent upon having sufficient data to yield a posterior distribution which is
normalizable.
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To find the map estimate for μ, set the first derivative of this equal to zero:

d
dμ

ln fM|Y (μ|y)|μ=μ0

=
(n − 1) ∑n

i=1(yi − μ0)
∑n

i=1(yi − μ0)2
= 0 (f.47)

n

∑
i=1

(yi − μ0) = 0 (f.48)

μ0 = 1
n

n

∑
i=1

yi = y. (f.49)

Therefore, the unweighted samplemean as given in equation (1.28) and equation (f.21)
is the map estimate for the mean of the distribution which generated the n indepen-
dent and identically distributed samples y. The uncertainty in the mean can be
estimated by finding the second derivative of the marginal posterior log-pdf:

d2

dμ2
ln fM|Y (μ|y) = (n − 1)

−n∑n
i=1(yi − μ)2 + 2 (∑n

i=1(yi − μ))
2

(∑n
i=1(yi − μ)2)

2 . (f.50)

But, at μ = μ0, ∑n
i=1(yi − μ) = 0, so

d2

dμ2
ln fM|Y (μ|y)|μ=μ0

= − n(n − 1)
∑n

i=1(yi − μ0)2
. (f.51)

The variance in the estimate μ0 is then

var[μ0] = − 1
d2 ln fM|Y (μ|y)/dμ2|μ=μ0

= 1
n

1
n − 1

n

∑
i=1

(yi − μ0) = s2

n
, (f.52)

where s2 is the unbiased estimate of the sample variance given in equation (1.29)
which means that s/√n is the map estimate’s uncertainty in the mean.

Now consider the marginal posterior density for σ . First, note that

n

∑
i=1

(yi − μ)2 = n(μ0 − μ)2 +
n

∑
i=1

(yi − μ0)2. (f.53)



f.5. Averaging schemes and their interpretations 453

Then,

fΣ|Y (σ|y) ∝ ∫
∞

−∞

1
(2π)n/2σn

exp
(

− 1
2σ2

n

∑
i=1

(yi − μ)2
)

dμ (f.54)

= 1
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(f.55)

∝ σ1−n exp
(

− 1
2σ2

n

∑
i=1

(yi − μ0)2)
. (f.56)

Therefore, the marginal posterior log-pdf for σ is

ln fΣ|Y (σ|y) = (1 − n) ln σ − 1
2σ2

n

∑
i=1

(yi − μ0)2. (f.57)

Taking the first derivative and setting it to zero yields

d
dσ

ln fΣ|Y (σ|y)|σ=σ0
= 1 − n

σ0
+ 1

σ30

n

∑
i=1

(yi − μ0)2 = 0 (f.58)

σ20 = 1
n − 1

n

∑
i=1

(yi − μ0)2 = s2. (f.59)

Therefore, the unbiased estimate of the sample variance as given in equation (1.29)
is the map estimate for the variance of the distribution which generated the n inde-
pendent and identically distributed samples y.

f.5.2.2.2 Weighted sample mean as a Bayesian parameter estimate Now con-
sider the case where each measurement has its own uncertainty, but the means are
all the same: yi ∼ 𝒩 (μ, σ2i ). The likelihood is then

fY|M(y|μ) =
n

∏
i=1

1
√2πσi

exp (−
(yi − μ)2

2σ2i ) (f.60)

= 1
(2π)n/2 ∏n

i=1 σi
exp

(
−1
2

n

∑
i=1

(yi − μ)2

σ2i )
. (f.61)

Assuming the same improper prior distribution for μ used above, the posterior pdf
for μ is simply

fM|Y (μ|y) ∝ 1
(2π)n/2 ∏n

i=1 σi
exp

(
−1
2

n

∑
i=1

(yi − μ)2

σ2i )
, (f.62)
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which means the log-pdf is

ln fM|Y (μ|y) ∝ −1
2

n

∑
i=1

(yi − μ)2

σ2i
. (f.63)

Differentiating this and setting it to zero gives

d
dμ

ln fM|Y (μ|y)|μ=μ0

=
n

∑
i=1

yi − μ0
σ2i

= 0 (f.64)

μ0 =
∑n

i=1 yi/σ
2
i

∑n
i=1 1/σ2i

= yw, (f.65)

which is exactly theweighted samplemean obtained from theweighted empirical cdf
in equation (f.32). To find the uncertainty in the mean, take the second derivative
of the log-pdf:

d2

dμ2
ln fM|Y (μ|y)|μ=μ0

= −
n

∑
i=1

1
σ2i

(f.66)

var[μ0] = 1
∑n

i=1 1/σ2i
. (f.67)

Unfortunately, there does not appear to be a simple Bayesian interpretation of
the weighted sample variance given in equation (f.37).

f.5.3 Methods of averaging

profiletools provides fivemethods of averaging the data y andX. For eachmethod,
the estimators used can either be robust or non-robust and weighted or unweighted.
When using a weighted estimator, the weights obtained from y are used for weighting
the X data such that the estimate x ± σx is consistent with the weighting applied to
y. In the following sections only the unweighted, non-robust case will typically be
shown. Replacing themeans, standard deviations and variances with the appropriate
weighted and/or robust versions will yield the other types of estimates. The following
sections explain each of the five methods and their statistical implications. In all
cases, the samplemean ormedian is used as the estimate for the center of the samples
y; the question is how to determine the uncertainty of the samples, indicated by σy
in the following.
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f.5.3.1 Sample statistics

The simplest approach is to use the sample standard deviation (or the sample in-
terquartile range): σy = s. This corresponds to the case where the points in a given
channel may not exhibit purely statistical variation and this variation should be rep-
resented in the uncertainty of the fit. As more points are added, the uncertainty for a
given channel will converge to a finite value: this method represents an uncertainty
which does not get averaged away. This is often the best choice for plasma data, as
the profile is rarely truly steady over a given period of time, so the uncertainty of the
fit should communicate the temporal variation of the data.

f.5.3.2 Root-mean-square uncertainties

When the sample size is too small to obtain a reasonable estimate of the sample
variance, an average uncertainty may be approximated by the root-mean-square
(rms) standard deviation:

σy = √E[σ2] = √
1
n

n

∑
i=1

σ2i . (f.68)

The statistical implication is that the variances of the samples yi ∼ 𝒩 (μ, σ2i ) have
some distribution σ2i ∼ fΣ2(σ2). This method then estimates the mean of this dis-
tribution, E[σ2], when there are too few samples to estimate the sample variance
itself.

f.5.3.3 Total variance

Sometimes the means and uncertainties in a channel represent the output of a proce-
dure for which the measurements represent the expected value and its uncertainty
under different conditions, t. In this case the variance in y is given by the law of total
variance:

var[y] = vart [E[y|t]] + Et [ var[y|t]]. (f.69)

This is essentially the sum of the variances corresponding to the sample statistics and
root-mean-square uncertainty cases. It represents the fact that there is variance in
the expectation between different conditions t as well as an expected level of variance
which would not be captured by sample statistics because y already represents an
average.
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f.5.3.4 The uncertainty in the mean

When it is the case that the samples in a given channel do in fact represent indepen-
dent samples of a given quantity, the uncertainty in their mean will tend to zero like
1/√n as the number of samples increases. The variance in the unweighted sample
mean is obtained from the uncertainty propagation equation:

var[y] = 1
n2

n

∑
i=1

σ2i . (f.70)

For equal uncertainties σi = σ , this reduces to the standard result

var[y] = σ2

n
(f.71)

which was obtained in equation (f.52). The variance in the weighted mean was
obtained in equation (f.67):

var[yw] = 1
∑n

i=1 1/σ2i
. (f.72)

If performing a weighted average of the X values, the weights are 1/σ2i , where σi is
the uncertainty in yi. Therefore, equation (f.72) does not hold. Instead, use the
uncertainty propagation equation to obtain

var[Xw] =
∑n

i=1 var[Xi]/σ
4
i

(∑n
i=1 1/σ2i )2

. (f.73)

f.5.3.5 The uncertainty in the mean using the sample variance

If reliable uncertainty estimates are not available, the expressions in the previous sec-
tion cannot be used. To obtain an uncertainty estimate with an equivalent statistical
interpretation that can be used in this case, consider each point to have a variance
equal to the sample variance. The variance in the unweighted mean is then

var[y] = s2

n
. (f.74)

The use of this approach with the weighted mean of y does not make sense as the
uncertainties will have been used to form the weighted mean but would then not
be used to estimate the uncertainty in the weighted mean. But, this is useful for the
weighted mean of X, where the uncertainties of the samples contained in X may not
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be known but the weights are obtained from the uncertainties in y. Applying the
uncertainty propagation equation, the variance in the weighted mean of X is

var[Xw] = s2X,w
∑n

i=1 1/σ4i
(∑n

i=1 1/σ2i )2
, (f.75)

where s2X,w is the weighted sample variance of x.

f.5.3.6 Illustration of the various averaging schemes

To illustrate the preceding discussion, Te data from channel 14 of the edge Thomson
scattering system2 on Alcator C-Mod shot 1110329013 (the sawtooth-suppressed shot
used to illustrate the different averaging schemes in section 2.5.4) are shown in
figure f.4, the empirical distributions are shown in figure f.5 and the means and
uncertainties computed with the various techniques are listed in table f.1.

In the first row of figure f.5, the empirical cdf and weighted empirical cdf were
constructed with the formulas given in section f.5.2.1. The other cdfs shown are for
normal distributions having each of the means and variances computed using all of
the techniques described in the previous sections. The cdf of the distribution for the
mean (cyan and yellow curves) is much steeper than the others because of the 1/√n
scaling of the uncertainty in the mean. Because of this difference in interpretation,
the distribution for the mean is not shown on the histograms or Q-Q plots. Instead,
a vertical line at the location of the mean and a vertical ±1σ uncertainty band is
shown.

The histograms are shown with eight bins in accordance with the Freedman-
Diaconis rule that the bin width be 2 ⋅ iqr/n1/3 [538]. The weighted histogram in the
middle row of figure f.5 is clearly biased towards lower values, and also appears to be
somewhat skew. This is likely because there cannot be a negative temperature, so the
assumption of a normal distribution breaks down at small values. The key aspect of
the weighted versus unweighted histogram is the influence of the presumed outlier
with Te ≈ 1.2 keV: on the unweighted histogram, this is the single blob in the tail of
the distribution which draws all of the unweighted, non-robust estimators towards
it. The point has such a large uncertainty, however, that it effectively disappears
in the weighted histogram, thereby bringing the weighted mean and median into
agreement.

The Q-Q plots in the bottom row were generated by plotting Φ−1( ̂FY (y)) as a
function of y, whereΦ−1(x) is the inverse cdf of the standard normal, 𝒩 (0, 1). If the
data lie on a straight line then it is reasonable to believe that they can be described

2. Where the innermost channel is 0 and the outermost channel is 17.
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by the normal distribution. Despite the fact that the data are not expected to be truly
normal because there cannot be a negative temperature, the normal distribution still
does appear to be a reasonable description of the data.

Given the quantiles of 𝒩 (0, 1) on the vertical axis, any other normal distribution
𝒩 (μ, σ2) will be a straight linewith x-intercept μ and slope 1/σ . This formulationwas
used to draw the straight lines in the Q-Q plots. Points at the edges which lie above
or below the trend extrapolated from the points in the middle of the distribution
may be outliers. This may be the case with the lowest two points and the three
highest points (including the one with Te ≈ 1.2 keV which is not shown on the Q-Q
plot because Φ−1(1) = ∞), as the robust sample estimator (blue dashed line) has
a clearly different slope (i.e., uncertainty) than the non-robust estimators on both
the weighted and unweighted plots. In other words, the robust estimate is able to
ignore possibly non-Gaussian outliers even when their uncertainties are not big
enough for weighting to eliminate them. That being said, this may in fact yield
overly optimistic results, given that so many points in the tails of the distribution
are effectively being ignored. That is why this thesis used the weighted sample mean
and standard deviation whenever diagnostic uncertainty estimates were available.

From figure f.5, it is clear that 𝒩 (y, s2) describes the data very well with robust,
unweighted estimators and both robust and non-robust weighted estimators for y
and s2. The rms variance is reasonable, but does not fit as well: for this case, there
are 19 data points, which is more than adequate to estimate the sample standard
deviation, so this method is not recommended here anyways. The total variance
does not describe the empirical distribution well, which is expected given that it
represents an assumption that each data point represents an average and hence the
scatter in the data is not representative of the actual scatter in what is beingmeasured.
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Figure f.4: Data from channel 14 of the edge Thomson scattering system from
Alcator C-Mod shot 1110329013 used to illustrate the different averaging schemes.
The time window is the same as was used in section 2.5.4. Recall that this portion
of the discharge is sawtooth-suppressed and relatively constant, so the variation
from time point to time point is expected to be almost purely statistical. The points
are shown with the ±1σ error bars provided by the Thomson scattering analysis
itself. The green solid line is the unweighted sample mean, the green dashed line is
the weighted sample median, the red solid line is the weighted sample mean and
the red dashed line is the weighted sample median. The choice between robust and
non-robust estimators (dashed versus solid) has little effect, but the choice between
weighted and unweighted estimators (green versus red) has a larger effect: the data
points with higher values have higher uncertainties, so the weighted estimators are
lower than the unweighted ones. Note the one point with Te ≈ 1.2 keV and the
two points with Te ≈ 0.25 keV: one might expect these to be outliers given their
distance from the sample mean and median. This is confirmed by the Q-Q plots in
figure f.5. The weighted, robust estimators are the least influenced by these three
points. This figure was produced using make_averaging_demo.py.

https://github.com/markchil/thesiscode/blob/master/make_averaging_demo.py
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Figure f.5: Empirical distributions for the data shown in figure f.4. The left column
gives the unweighted data and the right column gives the weighted data. The top
row is the cumulative distribution function (cdf), the middle row is the histogram
and probability density function (pdf), the bottom row is the Q-Q plot. Non-robust
estimators are shown as solid lines, robust estimators as dashed lines. In the bot-
tom two rows the distribution of the mean is not shown. Instead, a vertical line
at the location of the mean is shown with its ±1σ envelope. For the unweighted
estimators, both the uncertainty in the mean from uncertainty propagation (equa-
tion (f.72), cyan curve) and from sample statistics (equation (f.74), yellow curve)
are shown, but they overlap completely to yield the green band. Note that Q-Q
plots are traditionally shown with the theoretical quantiles on the horizontal axis,
but they are shown on the vertical axis here so the plots can all have the same
horizontal axis. The maximum value of the data set (which happens to be the pre-
sumed outlier) has Φ−1(1) = ∞ and is not shown. This figure was produced using
make_averaging_demo.py.

https://github.com/markchil/thesiscode/blob/master/make_averaging_demo.py
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Table f.1: Results of the different averaging schemes applied to the data from chan-
nel 14 of the edge Thomson scattering system from Alcator C-Mod shot 1110329013.

unweighted weighted

Method y σy y σy
Non-robust sample 0.424 0.27 0.412 0.14

rms 0.21 0.12
total 0.34 0.19
of mean 0.044 0.025
of mean, sample 0.056 —

Robust sample 0.458 0.17 0.408 0.082
rms 0.14 0.095
total 0.22 0.13



g
bayesimp: an open-source Python
package for Bayesian impurity
transport analysis

g.1 Package overview

bayesimp is a Python package which implements the Bayesian analysis of impurity
transport data described in chapter 3. The source code is available in [539], and
documentation is provided directly in the source files. The code consists of two mod-
ules: bayesimp implements the actual analysis, including retrieval and processing
of the experimental data, wrapping the strahl impurity transport code [276], and
preforming the actual inference using some combination of MultiNest [452–455],
scipy.optimize [293] and NLopt [540]. lines implements the simplified spectral
model described in section 3.5.2, and is based on the idl script lines.pro [45]. To
function, the code requires a master directory be provided containing the actual
strahl executable and its associated files, including the ionization, recombination
and photon emission rate coefficients in the appropriate adas file formats. For each
version of each analysis of a given shot, this directory is cloned and the relevant data
are stored in pickle files to support efficient re-analysis of a given case.

g.2 The bayesimpmodule

The basic structure of the bayesimp module is given in figure g.1. The core class is
Run, which contains the background ne and Te profile data in an instance of RunData
and the diagnostic signals in one of more instances of Signal and LocalSignal.
For real data, the individual injections which were combined into a composite time
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1 0..1 1..∗ 0..∗

Run

RunData TruthData Signal Injection

LocalSignal

Figure g.1: Basic structure of the bayesimp package. The main class is Run, which
contains one instance of RunData, zero or one instances of TruthData (depending
on whether or not it contains synthetic data), one or more instances of Signal or
its subclass LocalSignal and zero or more instances of Injection (depending on
whether or not it contains synthetic data).

series are stored as one or more Injection instances. For synthetic data, the true
(i.e., noise-free) values are stored in an instance of TruthData.

g.2.1 The Run class

The Run class is the main class of bayesimp: the first step to analyzing a shot is to
create a Python program which invokes the Run class’ constructor, and all subse-
quent analysis is conducted by calling the various methods of the Run instance. The
following sections explain the methods of the Run class roughly in the order in which
they are invoked.

g.2.1.1 Creating and restoring a Run: the __init__()method and associated
helper methods

The constructor of Run takes a large number of arguments to specify the properties
of the data to load/synthesize and the basis functions to use when inferring the trans-
port coefficient profiles. When first analyzing a shot, the setup_files() method is
called. This method clones the master strahl directory into a new directory with
name “strahl_SHOT_VERSION” then calls the idl script setup_strahl_run.pro to
pull the hirex-sr data from the tree and generate the grid file required by strahl
using routines provided by M. Reinke and T. Pütterich. The raw data are stored
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in an idl save file called “run_data.sav” for future use. Once the directory is in
place, the constructor looks to see if the data file called “run_data.pkl” containing
the background ne and Te profile data exists. If not, a RunData instance is created.
The RunData class’ constructor launches the gpfit gui from profiletools to allow
the user to fit the ne and Te profiles interactively using gpr. The RunData instance
containing the fitted profiles is then stored in a pickle file called “run_data.pkl” for
future use. Next, the constructor checks to see if the pickle files containing the pro-
cessed diagnostic signals exist. Line-integrated data are stored in a pickle file called
“signals.pkl” and local data are stored in a pickle file called “local_signals.pkl.”
For line-integrated datasets, the argon data are also loaded and are stored in a pickle
file called “ar_signal.pkl.” For synthetic datasets, the true (i.e., noise-free) signals
are stored in a pickle file called “truth_data.pkl.” If the relevant files do not exist,
the data are loaded: if the params_true keyword is not provided, real experimental
data are loaded from the MDSplus tree, otherwise a synthetic dataset is created.
When loading experimental data, the HirexData, VUVData and XTOMOData helper
classes are used to preprocess the data into the standardized form required by the
Signal class. Once all of the data have been loaded and stored in the list self.
signals, the compute_view_data() method is called. This method uses TRIPPy to
compute the matrices used to implement the line integrals. If synthetic data are to
be created, empty placeholders are first created for all of the local and line-integrated
signals to be synthesized. Then, the appropriate functions (described below) are
used to synthesize the diagnostic signals given the true parameters. Finally, the
apply_noise() method is used to add synthetic noise. Once this process is com-
plete, the data are stored in the relevant pickle files for future use and the Run instance
is ready.

g.2.1.2 The model parameters and the split_params() and get_prior()

methods

When evaluating the forward model, there are eight types of parameters. In the
order they are given when calling the relevant methods, these are:

1. Coefficients for the D profile. If the basis function method (stored in the
method attribute) is “linterp” (i.e., linear interpolation) these are simply the
values at each knot except the one at r/a = 0, which is determined by the
boundary conditions. If the basis function method is “spline” these are the
actual B-spline coefficients. The number of coefficients is determined by the
num_eig_D attribute and the order of spline to use is stored in the spline_k_D
attribute.
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2. Coefficients for the V profile. The number of coefficients is determined by the
num_eig_V attribute and the order of spline to use is stored in the spline_k_V
attribute.

3. Internal knot locations for the D profile. The number of knots is determined
by the number of coefficients and the spline order.

4. Internal knot locations for the V profile.

5. Scaling parameters for the signals. When the signals are normalized, the
uncertainty in the peak value can be accounted for by including nuisance
parameters which scale the normalized signals for each diagnostic.

6. Time shifts for the signals. It has been observed that the timebases of hirex-sr
and the impurity injector do not agree for some shots. This can be accounted
for by introducing nuisance parameters which shift each diagnostic’s timebase.

7. Weights for the ne profile. Used to propagate the uncertainty in the ne profile
using a truncated eigendecomposition of the Gaussian process fit.

8. Weights for the Te profile.

The split_params() method splits a parameter vector into these components. The
get_prior() method constructs a gptools.JointPrior instance which represents
the prior distribution for the parameters.

g.2.1.3 Calling strahl and evaluating the log-posterior

The DV2cs_den() method is the interface between Python and strahl, which is a
compiled Fortran program. Unfortunately, a direct code interface to strahl is not
available, so control of the code is accomplished by writing various input files to disk.
Several files do not change and are only written when Run.__init__() executes:

• Ca.atomdat tells strahl which spectral lines to compute emissivity profiles
for, and is only used if strahl’s radiation calculations are enabled.

• nete/CaflxSHOT.dat contains the particle source function and is written
using the write_source() method.

• nete/grid_SHOT.0 is the grid file which describes themagnetic geometry and
is written using the idl routine make_cmod_grid.pro.
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Given an input parameter vector, DV2cs_den() works by first forming the D,
V , ne and Te profiles. Then, the write_control() method is used to write the
file strahl.control which tells strahl how long to run the simulation for and to
execute without waiting for manual intervention. Next, the write_pp() method
is used to write the plasma parameter file nete/ppSHOT.0 which contains the ne
and Te profiles. Then, the write_param() file is used to write the parameter file
param_files/run_SHOT.0 which contains the D and V profiles. With these files in
place, strahl is called to evaluate the spatiotemporal evolution of the charge state
density profiles. These results are written to the file result/strahl_result.dat,
which DV2cs_den() reads and returns the contents of.

g.2.1.3.1 Method chain for line-integrated data The cs_den2dlines()method
converts the charge state density profiles obtained from DV2cs_den() to the nec-
essary local emissivity profiles. For isolated spectral lines the compute_emiss()

function is used to evaluate the emissivity according to the procedure described in
section 3.5.2.1. For the broadband soft x-ray emission the lines.compute_SXR()

function is used to evaluate the emissivity according to the procedure described in
section 3.5.2.2.

The dlines2sig() method converts the local emissivity profiles obtained from
cs_den2dlines() into simulated diagnostic signals. The emissivity profiles are
interpolated onto the diagnostic timebase using cubic splines and then the line
integrals are performed using the transformation matrices computed using TRIPPy.

The sig2diffs() method computes the difference between the simulated diag-
nostic signals obtained from dlines2sig() and the observed data.

The diffs2ln_prob() method converts the signal differences obtained from
sig2diffs() into either the log-likelihood or the log-prior, using the method de-
scribed in section 3.5.3.1.

g.2.1.3.2 Method chain for local data The cs_den2local_sigs() method con-
verts the charge state density profiles obtained from DV2cs_den() to simulated local
diagnostic signals. The local impurity densities are interpolated onto the diagnostic
grid in space and time using bivariate cubic splines.

The local_sig2local_diffs() computes the difference between the simulated
local diagnostic signals obtained from cs_den2local_sigs() and the observed data.

The local_diffs2ln_prob() method converts the signal differences obtained
from local_sig2local_diffs() into either the log-likelihood or the log-prior, us-
ing the method described in section 3.5.3.1.
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g.2.1.3.3 End-to-endmethods for log-probabilities The DV2ln_prob()method
carries out all of the steps above to convert a parameter vector into a log-posterior,
using either local or line-integrated data.

The u2ln_prob()method uses the inverse cdf of the prior distribution to map a
parameter vector in the unit hypercube to a parameter vector in the parameter space
defined by the prior distribution before calling DV2ln_prob(). It also provides the
ability to compute the gradient with respect to the parameters using finite differences.
A forward difference is used unless a parameter is too close to its bounds, in which
case a backwards difference is used. This is an improvement over the finite difference
routine provided by scipy.optimize which always uses forward differences and
hence can request the model be evaluated at a point outside of the allowed parameter
space.

g.2.1.3.4 Methods for gradients The DV2jac()methoduses numdifftools [541]
to compute the gradient with respect to the parameters.

The DV2d_ln_prob() method computes the derivative with respect to a single
parameter using finite differences. By default, a high-order centered difference
[542] is used unless the parameter is too close to its bounds, in which case either a
backwards or forwards difference is used, as appropriate.

The DV2d2_ln_prob()method computes the second derivative with respect to a
pair of parameters using finite differences applied to repeated calls of DV2d_ln_prob().

The DV2hessian() method computes the Hessian matrix with respect to the
parameters using repeated calls to DV2d2_ln_prob().

The DV2hessian_2() method computes the Hessian matrix with respect to
the parameters by fitting a second-order polynomial to repeated evaluations of
DV2ln_prob() over a dense grid.

g.2.1.4 Efficient handling of nuisance parameters: pseudo-marginal mcmc
and the dlines2ln_prob_marg()method

Notice that there are two types of parameters: the ones which are actually of interest,
θ, and the ones which are uninteresting nuisance parameters such as time shifts and
scaling factors, z. In our case the part of the forward model which depends on θ
is very expensive to evaluate (i.e., the strahl run and the spectral model), but the
part which depends on z is fairly cheap (interpolating onto the diagnostic timebase
and finding the sum of squares residual). This structure can be exploited using
pseudo-marginal sampling [543]: instead of sampling the full posterior distribution,
the mcmc sampling takes place only for the interesting parameters θ. At each step of
mcmc sampling, the posterior density is marginalized over the nuisance parameters.
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The marginalization is of low enough dimension that the integral can be performed
with (quasi) Monte Carlo sampling or Gaussian quadrature. This process is compu-
tationally cheap because it does not require any strahl runs. bayesimp provides
experimental support for this procedure using the dlines2ln_prob_marg()method
and the use_PMMCMC keyword.

g.2.1.4.1 Implementation of the log-posterior The full posterior distribution is

fθ,z|𝒟(θ, z|𝒟) =
f𝒟|θ,z(𝒟|θ, z)fθ(θ)fz(z)

f𝒟(𝒟)
, (g.1)

where 𝒟 is the experimental data and independent prior distributions for θ and z
have been assumed. What we actually care about is the marginal posterior distribu-
tion for θ:

fθ|𝒟(θ|𝒟) = ∫ fθ,z|𝒟(θ, z|𝒟) dz ∝ ∫ f𝒟|θ,z(𝒟|θ, z)fθ(θ)fz(z) dz. (g.2)

This is equivalent to finding

fθ|𝒟(θ|𝒟) ∝ Ez [f𝒟|θ,z(𝒟|θ, z)fθ(θ)] = fθ(θ)Ez [f𝒟|θ,z(𝒟|θ, z)]. (g.3)

To find the expectation, use the Monte Carlo estimate

Ez [f𝒟|θ,z(𝒟|θ, z)] ≈ 1
N

N

∑
i=1

f𝒟|θ,zi(𝒟|θ, zi) (g.4)

zi ∼ fz(z). (g.5)

For the next complication, note thatwhatwe actually need is themarginal log-posterior:

ln fθ|𝒟(θ|𝒟) ∝ ln fθ(θ) + lnEz [f𝒟|θ,z(𝒟|θ, z)]. (g.6)
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To avoid underflow when implementing this expression, care is needed when han-
dling the last term:

lnEz [f𝒟|θ,z(𝒟|θ, z)] ≈ ln
(

1
N

N

∑
i=1

f𝒟|θ,zi(𝒟|θ, zi))
(g.7)

= ln
(

N

∑
i=1

exp (ln f𝒟|θ,zi(𝒟|θ, zi)))
− lnN (g.8)

= ln
(

N

∑
i=1

exp (ln f𝒟|θ,zi(𝒟|θ, zi) − A) exp(A)
)

− lnN

(g.9)

= ln
(

N

∑
i=1

exp (ln f𝒟|θ,zi(𝒟|θ, zi) − A))
+ A − lnN , (g.10)

where

A = max
i

ln f𝒟|θ,zi(𝒟|θ, zi). (g.11)

g.2.1.4.2 Implementation of the marginal log-likelihood The full likelihood is

f𝒟|θ,z(𝒟|θ, z). (g.12)

For nested sampling we want the marginal likelihood

f𝒟|θ(𝒟|θ) = ∫ f𝒟|θ,z(𝒟|θ, z)fz(z) dz = E [f𝒟|θ,z(𝒟|θ, z)]. (g.13)

Therefore, the exact same framework as above can be used, but the prior terms can
be omitted.

g.2.1.4.3 Exploiting the structure to apply Gaussian quadrature Note that
equation (g.2) involves an integral of the form

∫ h(z)fz(z) dz. (g.14)

If fz(z) is taken to be Gaussian (a convenient choice in any case, as the time shift
is typically taken to be known to lie within some interval around some value), this
integral can be efficiently computed using Gauss-Hermite quadrature. In general,
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there will be multiple nuisance parameters and sparse grids will be necessary to ef-
ficiently compute the multidimensional integral. In the particular case of parameters
which only affect one diagnostic at a time, however, the problem permits the ef-
ficient use of a dense tensor product grid. Specifically, note that the likelihood can
be written as a product over the signals si from the individual diagnostics (each
diagnostic having associated parameter(s) zi):

f𝒟|θ,z(𝒟|θ, z) =
ND

∏
i=1

fsi|θ,zi(si|θ, zi) (g.15)

ln f𝒟|θ,z(𝒟|θ, z) =
ND

∑
i=1

ln fsi|θ,zi(si|θ, zi). (g.16)

Therefore, each zi can be evaluated on a 1d grid of quadrature points and the re-
sults can be combined to form the result on a dense tensor product grid with little
additional overhead.

Consider the case of two diagnostics, each with an associated time shift/scaling
parameter zi. The likelihood is

f𝒟|θ,z(𝒟|θ, z) = fs1|θ,z1(s1|θ, z1)fs2|θ,z2(s2|θ, z2), (g.17)

and the marginalized likelihood is

f𝒟|θ(𝒟|θ) = ∬ fs1|θ,z1(s1|θ, z1)fs2|θ,z2(s2|θ, z2)fz1(z1)fz2(z2) dz1 dz2 (g.18)

= ∫ fs1|θ,z1(s1|θ, z1)fz1(z1) dz1 ∫ fs2|θ,z2(s2|θ, z2)fz2(z2) dz2. (g.19)
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Applying Gauss-Hermite quadrature with nQ points for each1 time shift gives

ln f𝒟|θ(𝒟|θ) ≈ ln
(

nQ

∑
i=1

fs1|θ,z1,i
(s1|θ, z1,i)wi

nQ

∑
i=1

fs2|θ,z2,i
(s2|θ, z2,i)wi)

(g.20)

= ln
(

nQ

∑
i=1

exp (ln fs1|θ,z1,i
(s1|θ, z1,i) + lnwi))

+ ln
(

nQ

∑
i=1

exp (ln fs2|θ,z2,i
(s2|θ, z2,i) + lnwi))

(g.21)

= ln
(

nQ

∑
i=1

exp (ln fs1|θ,z1,i
(s1|θ, z1,i) + lnwi − A1))

+ A1

+ ln
(

nQ

∑
i=1

exp (ln fs2|θ,z2,i
(s2|θ, z2,i) + lnwi − A2))

+ A2,

(g.22)

where wi is the ith quadrature weight and

A1 = max
i

ln fs1|θ,z1,i
(s1|θ, z1,i) + lnwi (g.23)

(and likewise for A2).

g.2.1.5 Parameter estimation using optimizers

The find_MAP_estimate() method uses optimizers from either NLopt or scipy
.optimize to find the parameters which best describe the data. A global search
is conducted by starting the optimizer at many points distributed throughout the
parameter space. These points can either be distributed (pseudo)randomly, or a
more systematic sampling can be obtained by using a quasi-random sequence such
as the Sobol sequence [544]. The multiple starting points are evaluated in parallel
with the help of the _OptimizeEval helper class. All of the optimizers available in
scipy.optimize [293] and NLopt [540] were tested, and it was found that the best
convergence (both in terms of number of function evaluations needed for conver-
gence and quality of the final optimum) was obtained using the Sbplx algorithm in
NLopt, which is based on the Subplex algorithm described in [545]. Furthermore, the

1. In general different numbers of quadrature points could be used for each diagnostic, but maxi nQ,i
function calls are needed in the current implementation, so it is best to use the same number of points
for each diagnostic.
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performance of all of the optimizers was improved by mapping all of the parameters
to the unit hypercube using the cdf of the prior distribution and performing the
optimization in this transformed space.

g.2.1.6 Parameter estimation using affine-invariant ensemble samplers

The affine-invariant ensemble sampler [353] implemented in the emcee code [354]
can be used for parameter estimation, though it was found that convergence was
prohibitively slow. The sample_posterior() method creates the emcee.Sampler
instance, using the _ComputeLnProbWrapper helper class to support parallelization.
This method enables the use of the basic affine-invariant ensemble sampler [353],
parallel tempering [450] or adaptive parallel tempering [451]. The add_samples()
method adds samples to an existing emcee.Sampler instance.

g.2.1.7 Parameter estimation and model selection using MultiNest

The MultiNest [452–454] algorithm can be used for parameter estimation and
model selection using the PyMultiNest [455] interface. The run_multinest()method
calls pymultinest.run() to run the algorithm. The parameters are mapped from
the unit hypercube sampling space to the parameter space defined by the prior
distribution using the multinest_prior() method. When using local measure-
ments, the log-likelihood is evaluated using the multinest_ll_local() method.
When using line-integrated measurements, the log-likelihood is evaluated using
the multinest_ll_lineintegral()method. The results can be visualized with the
process_multinest() method.

g.2.1.8 Other useful methods

The parallel_compute_cs_den() method enables parallelized brute-force evalua-
tion of the log-posterior over an arbitrary grid in parameter space.

The compute_marginalized_DV() method evaluates the posterior mean and
standard deviation of the D and V profiles given samples of the parameters.

g.2.2 Enabling parallel execution: the acquire_working_dir() and
release_working_dir() functions

Running strahl in parallel is difficult because all of its input and output is accom-
plished using files. To solve this issue, bayesimp provides several methods to create
one temporary working directory containing a copy of the strahl executable per
thread. When using the native Python multiprocessing module for parallelization,
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the make_pool() function creates a pool where each worker has its own temporary
working directory. The finalize_pool() function removes these directories when
the pool is no longer needed.

The acquire_working_dir() and release_working_dir() methods are used
to control which thread uses which working directory when using mpi for paralleliza-
tion. A list of available working directories is kept in the text file working_dirs.txt.
When a thread requests a working directory, the directory’s path is removed from
working_dirs.txt. If the file is empty, a new working directory is cloned. When a
working directory is released, its path is written back to working_dirs.txt.

g.3 The linesmodule

The lines module implements the spectral model for sxr radiation described in
section 3.5.2.2. The main function provided for this purpose is compute_SXR(). This
computes the strength of all of the lines above a given energy threshold, weights
the emission using the filter transmission curve, and adds the contributions up to
yield the total power reaching the detector. The strength of the lines themselves is
computedwith the compute_lines() function, which is a Python port of the original
idl lines.pro routines. For the He-like charge state, the program can either use the
transitions available in lines.pro or the more complete set of collisionally-excited
lines obtained from adas.

g.4 Tutorial

Before running any of the following examples, set up a directory to hold all of your
strahl runs. In that directory, place a copy of the master strahl directory. On
the Alcator C-Mod server, copy /home/markchil/codes/bayesimp_demo/strahl.
Each strahl analysis has an associated shot number (the actual shot number for
experimental data, or the shot number the background profiles are pulled from
for synthetic data) and a version number. The version number allows you to try
multiple approaches on a given shot, and to generate multiple synthetic datasets
from a given shot. For each shot/version pair, you should create a settings file.
The settings file is simply a Python script which creates an instance of the Run

class with the appropriate settings. The file can also contain the code needed to
carry out various steps in the analysis, such as running MultiNest. This section
demonstrates three use cases: section g.4.1 shows how to set up to analyze real
experimental data, section g.4.2 shows how to create a synthetic dataset with local
measurements and section g.4.3 shows how to create a synthetic dataset with line-
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integrated measurements. Finally, section g.4.4 shows how to run the analysis itself.
All three examples use shot 1101014006, themain shot used for the impurity transport
work in this thesis. The actual scripts used for this thesis are on GitHub at https:
//github.com/markchil/thesiscode, which give many examples of how to use
the more advanced code options.

g.4.1 Using real experimental data

Code Listing g.1: Settings file to analyze real experimental data.
1 #!/usr/bin/env python2.7

2 from __future__ import division

3

4 import bayesimp

5 import gptools

6

7 r = bayesimp.Run(

8 shot=1101014006,

9 version=1,

10 time_1=1.165,

11 time_2=1.265,

12 injections=[

13 bayesimp.Injection(0.965, 0.95, 1.02),

14 bayesimp.Injection(1.165, 1.155, 1.213),

15 bayesimp.Injection(1.365, 1.35, 1.440)

16 ],

17 Te_args=['--system', 'TS', 'GPC', 'GPC2'],

18 ne_args=['--system', 'TS'],

19 num_eig_D=3,

20 num_eig_V=3,

21 shift_prior=gptools.NormalJointPrior([-10e-3, 0.0, 0.0], [5e-3, 2e-3, 2e-3]),

22 source_file='/home/markchil/codes/bayesimp_demo/Caflx1101014006.dat'

23 )

1. Put the contents of code listing g.1 into a Python script. For this example, the
name used is “settings_1101014006_1.py.” This is the settings file which
is used to control the program. All of the options are documented in the
bayesimp source code, but the parameters used in this example are as follows:

shot The shot number.

version The version number of the analysis.

time_1 The start time for the strahl simulation.

https://github.com/markchil/thesiscode
https://github.com/markchil/thesiscode
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time_2 The end time for the strahl simulation. The conditions halfway
between time_1 and time_2 are used for the background profiles.

injections List of objects describing each of the injections to include. For
each injection, the parameters are the time of the injection itself, the
beginning of the time window to use data from and the end of the time
window to use data from.

Te_args, ne_args Arguments passed to gpfit when fitting the Te and ne
profiles. In the example, the arguments specify to use the data from
Thomson scattering, gpc and gpc2 for Te and just Thomson scattering
for ne. You can get documentation on all of the options by running
“gpfit -h” from the shell.

num_eig_D, num_eig_V The number of free coefficients for the D and V pro-
files.

shift_prior The prior distribution for the time shift nuisance parameters.
The first number is for hirex-sr, the second for the vuv spectrometers
xeus and loweus, the third for xtomo. The values used reflect the
observation that the hirex-sr timebase is off by about 10ms while the
other timebases are synchronized with the impurity injector timebase.

source_file The source file to use. This analysis uses a source file which
was already created.

2. Launch IPython (type “ipython” in the shell), then run the settings file by
typing “%run settings_1101014006_1.py.”

3. A gpfit window will open to fit the Te profile, as shown in figure g.2. The
time window and evaluation grid have been set automatically. Press the “load
data” button to load the data. Then press the “plot data” button to apply your
averaging settings and plot the data. Next, press the “fit data” button to fit the
profile. Adjust the parameters, re-plot and re-fit the data as needed. When
the fit is acceptable, press the “exit” button to continue on to the next step.

4. Another gpfit window will open to fit the ne profile. As before, when the fit
is acceptable, press the “exit” button to continue on to the next step.

5. A “hirex-sr inspector” window will open to let you flag outlying data points
in the hirex-sr calcium signal, as shown in figure g.3. Use the left and right
arrow keys to move between channels, and type the indices of the points to
drop into the text box as a comma-separated list. Press the return key to
update the plot. Some points will have already been flagged by a simple set of
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Figure g.2: gpfit window to fit the temperature profile, showing the completed fit.

rules, you may put these back in by deleting their index from the text box if
the automatic flagging was too aggressive. When this process is done, simply
close the window to continue on to the next step.

6. The next step fits the time-series data to compute normalization factors, and
will take a while.

7. When the hirex-sr normalization factors have been computed, a “xeus in-
spector” window will open to let you select which lines to use from the xeus
spectrometer, as shown in figure g.4. The upper left plot shows the complete
spectrum as a function of wavelength and time, the upper right plot shows the
signal on a selected pixel as a function of time and the lower left plot shows the
spectrum at a selected time. Clicking in any of the three figures will move the
blue and green cursors and update what is shown; fine adjustments may be
made using the sliders at the bottom of the window. The vertical lines indicate
lines for which photon emission coefficients are available, but not all of these
lines may be resolvable on a given shot. Most of the distinguishable Li-like
calcium lines are in the 1.85 nm to 2.05 nm range. Each line has an associated
index, shown at the bottom of the lower left plot. To include a line in the
analysis, type its index in the “included lines” box and indicate the starting
and ending wavelengths to include in the appropriate boxes. Multiple lines
may be blurred together: simply indicate these by putting all of the indices
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Figure g.3: hirex-sr inspector window. The left and right arrow keys are used to
switch between channels, and the text box allows outlying points to be flagged. Usu-
ally the points which are flagged automatically are in the low-signal regions before
and after the injections which are not included in the normalized and combined
data anyways. The objective is to filter out any points which are clearly the result of
a bad fit to the underlying hirex-sr spectrum.

into the “included lines” box as a comma-separated list. In addition to the
wavelength range, a time range unaffected by the impurity injections to use for
baseline subtraction must be provided. To add another group of lines, simply
press the “+” button. To remove a group of lines, select that line in the “defined
lines” list and click the “−” button. To update the settings for a given group
of lines, press the “apply” button. You can edit existing lines by selecting the
relevant line in the list. When this process is done, simply close the window
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Figure g.4: xeus inspector window. The upper left plot shows the complete spec-
trum as a function of wavelength and time. The horizontal blue line is the time
cursor, the vertical green line is the wavelength cursor. Clicking in any of the plots
will update one or both of these cursors. The cursor locations can be fine-tuned
with the sliders at the bottom. The red dashed lines indicate the wavelengths for
which photon emission coefficients are available. The upper right plot shows the
intensity as a function of time at the selected pixel. The lower left plot shows the
spectrum at the selected time. When a spectral range has been selected, the time
history of the intensity summed over that range will be shown in the lower right plot.
The list on the right shows the combinations of lines which have been defined, and
the boxes below are used to specify the line indices to include, the spectral range to
use and the time window to use for baseline subtraction.

to continue on to the next step.

8. If loweus data are available for the shot you are analyzing, a loweus inspector
window will open. The interface is the same as was used for xeus.

9. An “xtomo inspector” window will open to let you pre-process the xtomo
data, as shown in figure g.5. The “boxcar points” box lets you apply boxcar
averaging to the figure tomake it easier to see what is happening; note that this
has no effect on the data used in the actual analysis, however. Cycle through
channels with the left and right arrow keys, and flag any bad channels. Use the
up and down arrow keys to cycle through the xtomo systems. Because the
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Figure g.5: xtomo inspector window. The channel the window opened to is bad,
and needs to be flagged using the “bad channel” checkbox.

xtomodiagnostics are so strongly affected by other impurities, youwill usually
need to select a different background subtraction range for each injection. You
can select multiple ranges by defining a comma-separated list of ordered pairs.
When you are done, simply close the window to continue on to the next step.

10. Another “hirex-sr inspector” window will open to let you flag bad points in
the argon data. As before, close the window when you are done.

11. The loading and pre-processing of the data is now complete. Now, running
the settings file will simply restore the data from the data files created during
this process.

g.4.2 Creating local synthetic data

1. Put the contents of code listing g.2 into a Python script. For this example, the
name used is “settings_1101014006_2.py.” This is the settings file which
is used to control the program. All of the options are documented in the
bayesimp source code, but the parameters used in this example are as follows:

shot The shot number to get the magnetic equilibrium and background pro-
files from.
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Code Listing g.2: Settings file to create local synthetic data.
1 #!/usr/bin/env python2.7

2 from __future__ import division

3

4 import bayesimp

5 import scipy

6

7 r = bayesimp.Run(

8 shot=1101014006,

9 version=2,

10 time_1=1.165,

11 time_2=1.265,

12 Te_args=['--system', 'TS', 'GPC', 'GPC2'],

13 ne_args=['--system', 'TS'],

14 num_eig_D=1,

15 num_eig_V=1,

16 source_file='/home/markchil/codes/bayesimp_demo/Caflx1101014006.dat',

17 params_true=[1.0, -10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],

18 num_eig_ne=3,

19 num_eig_Te=3,

20 local_cs=[18, None],

21 local_time_res=6e-3,

22 num_local_space=5,

23 local_synth_noise=5e-2,

24 use_line_integral=False,

25 use_local=True

26 )

version The version number of the analysis.
time_1 The start time for the strahl simulation.
time_2 The end time for the strahl simulation. The conditions halfway

between time_1 and time_2 are used for the background profiles.
Te_args, ne_args Arguments passed to gpfit when fitting the Te and ne

profiles. In the example, the arguments specify to use the data from
Thomson scattering, gpc and gpc2 for Te and just Thomson scattering
for ne. You can get documentation on all of the options by running
“gpfit -h” from the shell.

num_eig_D, num_eig_V The number of free coefficients for the D and V pro-
files.

source_file The source file to use. This analysis uses a source file which
was already created.
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params_true The parameters to construct the synthetic data with. The order
of the parameters is:
(a) Coefficients for the D profile.
(b) Coefficients for the V profile.
(c) For profiles with more than one coefficient, there would then be

internal knot locations for the D and V profiles. This example only
has one coefficient per profile, however, so there are no internal
knots.

(d) Weights for the ne profile.
(e) Weights for the Te profile.
Note that the local synthetic data do not use time shifts or scaling factors.

num_eig_ne, num_eig_Te The number of eigenvalues to keep for the ne and
Te profiles.

local_cs Charge states to construct local observations of. In this example,
“18” means the He-like calcium density profile and “None” means the
total calcium density profile (summed over all charge states).

local_time_res Time resolution for local data.
num_local_space Number of equally-spaced points to produce local data at.
local_synth_noise Relative noise level for the local data.
use_line_integral Flag to create line-integrated data.
use_local Flag to create local data.

2. Launch IPython (type “ipython” in the shell), then run the settings file by
typing “%run settings_1101014006_2.py.”

3. A gpfit window will open to fit the Te profile, as shown in figure g.2. The
time window and evaluation grid have been set automatically. Press the “load
data” button to load the data. Then press the “plot data” button to apply your
averaging settings and plot the data. Next, press the “fit data” button to fit the
profile. Adjust the parameters, re-plot and re-fit the data as needed. When
the fit is acceptable, press the “exit” button to continue on to the next step.

4. Another gpfit window will open to fit the ne profile. As before, when the fit
is acceptable, press the “exit” button to continue on to the next step.

5. The programwill now generate the synthetic data. Once the command prompt
reappears, the generation of the synthetic data is now complete. In the future,
running the settings file will simply restore the data from the data files created
during this process.
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g.4.3 Creating line-integrated synthetic data

Code Listing g.3: Settings file to create line-integrated synthetic data.
1 #!/usr/bin/env python2.7

2 from __future__ import division

3

4 import bayesimp

5 import scipy

6

7 r = bayesimp.Run(

8 shot=1101014006,

9 version=3,

10 time_1=1.165,

11 time_2=1.265,

12 Te_args=['--system', 'TS', 'GPC', 'GPC2'],

13 ne_args=['--system', 'TS'],

14 num_eig_D=1,

15 num_eig_V=1,

16 source_file='/home/markchil/codes/bayesimp_demo/Caflx1101014006.dat',

17 params_true=scipy.concatenate((

18 [1.0, -10.0],

19 [1.0,] * 11,

20 [0.0,] * 3,

21 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

22 )),

23 num_eig_ne=3,

24 num_eig_Te=3,

25 use_line_integral=True,

26 use_local=False,

27 hirex_time_res=6e-3,

28 vuv_time_res=2e-3,

29 synth_noises=[5e-2, 5e-2, 5e-2],

30 )

1. Put the contents of code listing g.3 into a Python script. For this example, the
name used is “settings_1101014006_3.py.” This is the settings file which
is used to control the program. All of the options are documented in the
bayesimp source code, but the parameters used in this example are as follows:

shot The shot number to get the magnetic equilibrium and background pro-
files from.

version The version number of the analysis.

time_1 The start time for the strahl simulation.
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time_2 The end time for the strahl simulation. The conditions halfway
between time_1 and time_2 are used for the background profiles.

Te_args, ne_args Arguments passed to gpfit when fitting the Te and ne
profiles. In the example, the arguments specify to use the data from
Thomson scattering, gpc and gpc2 for Te and just Thomson scattering
for ne. You can get documentation on all of the options by running
“gpfit -h” from the shell.

num_eig_D, num_eig_V The number of free coefficients for the D and V pro-
files.

source_file The source file to use. This analysis uses a source file which
was already created.

params_true The parameters to construct the synthetic data with. The order
of the parameters is:
(a) Coefficients for the D profile.
(b) Coefficients for the V profile.
(c) For profiles with more than one coefficient, there would then be

internal knot locations for the D and V profiles. This example only
has one coefficient per profile, however, so there are no internal
knots.

(d) Scaling factors for each signal (one for hirex-sr, one for each vuv
line, one for each xtomo system).

(e) Time shifts for each diagnostic (one for hirex-sr, one for the vuv
spectrometers, one for the xtomo systems).

(f) Weights for the ne profile.
(g) Weights for the Te profile.

num_eig_ne, num_eig_Te The number of eigenvalues to keep for the ne and
Te profiles.

use_line_integral Flag to create line-integrated data.
use_local Flag to create local data.
hirex_time_res, vuv_time_res Time resolution for hirex-sr and the vuv

spectrometers.
synth_noises Relative noise levels for hirex-sr, the vuv spectrometers and

the sxr arrays.

2. Launch IPython (type “ipython” in the shell), then run the settings file by
typing “%run settings_1101014006_3.py.”
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3. A gpfit window will open to fit the Te profile, as shown in figure g.2. The
time window and evaluation grid have been set automatically. Press the “load
data” button to load the data. Then press the “plot data” button to apply your
averaging settings and plot the data. Next, press the “fit data” button to fit the
profile. Adjust the parameters, re-plot and re-fit the data as needed. When
the fit is acceptable, press the “exit” button to continue on to the next step.

4. Another gpfit window will open to fit the ne profile. As before, when the fit
is acceptable, press the “exit” button to continue on to the next step.

5. The programwill now generate the synthetic data. Once the command prompt
reappears, the generation of the synthetic data is now complete. In the future,
running the settings file will simply restore the data from the data files created
during this process.

g.4.4 Performing the inference

g.4.4.1 Finding the map estimate

1. Add the contents of code listing g.4 to the end of your settings file.

Code Listing g.4: Code to find the map estimate.
1 pool = bayesimp.make_pool()

2 out = r.find_MAP_estimate(pool=pool)

3 bayesimp.finalize_pool(pool)

2. Run the settings file as before: type “%run settings_1101014006_1.py” in
IPython.

3. The code will now make a pool with as many processors as are available, then
will run the optimizer starting from random locations. By default, two random
starting locations are tried for each worker in the pool.

g.4.4.2 Sampling with MultiNest

1. Add the contents of code listing g.5 to end of your settings file. The keyword
“local=False” tells it to use line-integrated data.

Code Listing g.5: Code to run MultiNest.
1 r.run_multinest(local=False)
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2. To run this on a single processor (very slowly), run the settings file as before:
type “%run settings_1101014006_1.py” in IPython.

3. To run this in parallel, from the shell type “mpiexec -np 24 python2.7

settings_1101014006_1.py” (but replace 24 with the number of threads to
use).



h
Software configuration

Table h.1: Software configuration in use at the time this thesis was written.

Name Reference(s) Version

Python [546, 547] 2.7.11
IPython [548] 4.1.1
NumPy [529] 1.10.4
SciPy [293] 0.17.0
matplotlib [549] 1.5.1
emcee [354] 2.1.0
mpmath [531] 0.19
SymPy [478] 1.0
pandas [536, 537] 0.18.0
Cython [532] 0.23.4
MultiNest [452–454] 3.10
PyMultiNest [455] 1.6
scikit-image [435] 0.12.3
NLopt [540] 2.4.2
numdifftools [541] 0.9.16
sobol [550] 0.9
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