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1 What is uncertainty?

• It is impossible to ever measure a quantity exactly: there will always be
some level of uncertainty associated with a measurement.

• Uncertainty is exactly what it sounds like: it is how unsure you are
about the value of a quantity.

• A statement of a measurement is incomplete if it does not state the un-
certainty in the measurement along with the measured value.

• The uncertainty typically comes from a variety of sources:

– Uncertainties that come from a lack of information are called epis-
temic uncertainties.

∗ This category of uncertainty usually includes what you might be
familiar with as systematic errors or systematic effects.

∗ Epistemic uncertainties can be removed by performing calibra-
tions or other auxiliary measurements.

∗ Example: You want to measure the current in a circuit without
taking it apart to insert an ammeter. So, you connect a voltmeter
across a 1 kΩ resistor that forms part of the circuit. You can
then get the current in that part of the circuit using Ohm’s law:
I = V/R. But, the resistor only has a tolerance of 5% – its
actual value is uncertain, and can be anywhere from 0.95 kΩ to
1.05 kΩ. This means that if you measured V = 1V across the
resistor with your voltmeter,1 the current could be anywhere
from 1.05mA to 0.95mA. You could in principle remove the
resistor from the circuit and measure the actual value, so the
uncertainty is epistemic.

1There will also be uncertainty in the voltage measurement itself, we will see how to include
that later in this lecture.

1



– Uncertainties that come from a fundamental random fluctuation in
the quantity being measured are called aleatory uncertainties.

∗ This category of uncertainty usually includes what you might be
familiar with as random errors or random effects.

∗ Aleatory uncertainties are a reflection of an intrinsic property of
the thing being measured and hence cannot ever be completely
eliminated from a measurement.

∗ Example 1: You have perhaps heard the phrase “Poisson statis-
tics” or “counting statistics” in association with radiation detec-
tors. This phrase refers to the fact that, given a source that emits
particles randomly at some average rate λ particles per second,
there will be random variation in the number of particles emitted
during a time interval ∆t. On average there will be N = λ∆t
particles emitted in the time interval ∆t, but the typical amount
of variation can be shown to be ±

√
λ∆t particles. Hence, if you

are trying to estimate λ = N/∆t, there will be an uncertainty
of ±

√
N/∆t in your estimate for λ. You can reduce this uncer-

tainty by collecting data for a longer period of time, but it will
never go away completely.

∗ Example 2: If you were to take very careful measurements of
a power supply like you charge your phone with, you will find
that the output isn’t perfectly constant – there are variations
from how the voltage is produced, as well as noise that is picked
up by the circuit. Thus, even if you had a perfect meter,2 you
still would have to state the output of the supply with some
uncertainty that comes from the fluctuations in the output.

2 Basics of probability and statistics

2.1 Random variables and probability density functions

• A random variable is a number that depends on the outcome of an
experiment.3 The variable is random in the sense that the outcome of the
experiment is random – it is determined by some underlying probability
law.

• A simple example of a random variable is as follows: let the experiment
consist of flipping a coin. Take the random variable X to be 1 if the
coin comes up heads, 0 otherwise.4 The experiment in this case is clearly
random – about half of the time the coin will be heads, about half of the
time it will be tails, but we don’t know which until we flip the coin.

2“Perfect” is used here both in the sense of being “ideal” as discussed earlier in the class,
as well as in the sense of delivering an infinitely precise reading – such a thing does not exist!

3In our case, the “experiment” will be when you take a measurement.
4This is called a Bernoulli random variable.
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• The probability density function (PDF) describes the likelihood that
the random variable takes on a given value.

• Specifically, given the PDF fX(x) for random variable X, the probability
that X lies between x1 and x2 is

P (x1 ≤ X ≤ x2) =

∫ x2

x1

fX(x) dx (1)

2.2 Summary quantities

• The PDF describes everything there is to know about the associated ran-
dom variable, but can often contain more information than is useful.

• One way of summarizing the distribution is its mean:

µ = E[X] =

∫ ∞

−∞
xfX(x) dx (2)

This is essentially the “center of mass” of the PDF.

• Depending on the application, a different way of summarizing the center
of the distribution may be justified – for instance, the mode is the point
for which fX(x) is maximum.

• The mean corresponds to the expected “typical” value – this is what we
would quote for the quantity itself. When discussing uncertainty we are
also interested in how much the distribution is spread out.

• The most common way to summarize this is the variance:

σ2 = var[X] = E[(X − µ)2] =

∫ ∞

−∞
(x− µ)2fX(x) dx (3)

• You can re-write this in a more convenient form:

σ2 = var[X] = E[X2]− (E[X])2 (4)

• The variance is akin to the “moment of inertia” of the PDF, taken about
the mean.

• For our purposes, we will be very concerned with the standard devia-
tion:

σ =
√
var[X] (5)

• We can discuss the relationship between two random variables in terms of
their covariance:

σXY = cov[X,Y ] = E[(X − µX)(Y − µY )] (6)

• Note that people will sometimes write the covariance as σ2
XY – you need

to check the context and the units to make sure you understand the ex-
pression!
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2.3 Important distributions

2.3.1 Normal (Gaussian) distribution

• The normal distribution is quite ubiquitous – it describes, for example,
the bell-shaped curve of exam scores and the result of adding up many
independent sources of noise.

• Its PDF is determined by the mean µ and standard deviation σ:

fX(x) =
1√
2πσ2

exp

[
− (x− µ)2

2σ2

]
(7)

• A shorthand you will often see to say that a random variable X follows a
normal distribution with mean µ and variance σ2 is X ∼ N (µ, σ2).

• Because the normal distribution is the limiting case of many other distri-
butions, it is often a very good model for the noise in a measurement.
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Figure 1: Several examples of the normal distribution for various values of µ, σ.
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2.3.2 Uniform distribution

• A random variable that follows the uniform distribution has equal proba-
bility of lying anywhere in a given interval, and zero probability of lying
outside the interval:

fX(x) =

{
1

b−a , a ≤ x ≤ b

0, elsewhere
(8)

• You should be able to convince yourself pretty easily that the mean of the
uniform distribution is

µ =
a+ b

2
(9)

• The variance of the uniform distribution is

σ2 =
(b− a)2

12
(10)

• A shorthand to indicate that a random variable X follows the uniform
distribution between a and b is X ∼ U(a, b).
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Figure 2: Several examples of the uniform distribution for various a, b.
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2.4 Sample statistics

• One of the ways to reduce certain types of (aleatory) uncertainty is to
take repeated measurements and compute the measured value and its
uncertainty from the samples.

• The sample mean gives an estimate of the value of the quantity:

x =
1

N

N∑
i=1

xi (11)

• The sample standard deviation gives an estimate of the width of the
distribution, and is what will typically be used to quantitatively express
the uncertainty:5

s =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (12)

• If each individual measurement xi has the same uncertainty σ, then you
can show that the mean computed from the samples has uncertainty

σµ =
σ√
N

≈ s√
N

, (13)

where in the last step the sample standard deviation has been used as an
approximation for σ. From this expression it is clear why taking a large
number of samples is desirable: by taking many samples you can reduce
the random components of uncertainty to the point that the epistemic
uncertainties dominate. Note that this is only true when you are discussing
the uncertainty in a mean: considering the power supply example from
before, no amount of measurements will change the fact that the output is
fluctuating and that this fluctuation represents an uncertainty when the
value of the voltage is used elsewhere. But, additional measurements will
let you pin down what the mean value of the output is.

5The factor is 1/(N − 1) instead of 1/N as you might have expected for subtle statistical
reasons. It is related to the fact that the expression involves x, which was itself computed
from the set of samples. This will inevitably lead to an underestimation of the variance, which
using 1/(N − 1) corrects for. Look up Bessel’s correction if you would like to know more.
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3 Expressing uncertainty

• There is no universal standard for how to express uncertainty in measure-
ments.6

• You will typically encounter expressions of the form “1.0± 0.2,” or some-
times the equivalent but less clear “1.0(2).”

– This means that the best estimate of the quantity is 1.0, and it has
an “uncertainty” of ±0.2.

– The exact interpretation of this uncertainty depends on context, and
should be defined somewhere in the document it is used in.

– The most common convention is that the uncertainty (here, 0.2) is the
standard deviation of the probability distribution for the quantity.

• You might also see uncertainties written as intervals, such as “the 95%
confidence interval for the quantity is [0.6, 1.4].”

– Loosely speaking,7 this means there is a 95% chance that the interval
from 0.6 to 1.4 contains the true quantity.

– 95% is a very popular confidence interval to use, with other common
choices being 50% and 99% depending on the application.

– If you are justified in treating the quantity being measured as normally-
distributed, then σ is nicely related to the confidence interval:

∗ ±1σ is a 68.3% confidence interval.

∗ ±2σ is a 95.4% confidence interval.

∗ ±3σ is a 99.7% confidence interval.

4 Propagating uncertainty

• Aleatory uncertainties can usually be modeled as random variables that
obey a probability distribution that can be determined from your mea-
surements and other knowledge of the experiment.

– This permits the use of the standard deviation as an uncertainty
estimate, as described above.

6BIPM JCGM 100:2008 (a URL is provided at the end of these notes) is the closest thing
to a standard that has widespread acceptance today, but it does not have universal adoption.

7The actual statistical meaning of the phrase “confidence interval” is a little more complex
than this, but these nuances are beyond our scope. You may also see the phrase “credible
interval,” which does have the more obvious interpretation that there is a 95% (for instance)
likelihood that the interval contains the correct value of the quantity, but forming credible
intervals usually requires more assumptions than forming confidence intervals.
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– Given some quantity x which is a function of variables u, v, and so
on, the uncertainty propagation equation gives the uncertainty
in x as

σ2
x = σ2

u

(
∂x

∂u

)2

+ σ2
v

(
∂x

∂v

)2

+ · · ·+ 2σuv

(
∂x

∂u

)(
∂x

∂v

)
+ . . . ,

(14)

where the second set of terms includes all possible pairings of the
variables that x depends on.

– For independent errors (so that σuv = 0) some specific cases of inter-
est are:

x = au+ bv → σ2
x = a2σ2

u + b2σ2
v (15)

x = auv → σ2
x

x2
=

σ2
u

u2
+

σ2
v

v2
, (16)

where a and b are constants (i.e., they have no uncertainty).

• It is usually much harder to justify treating epistemic uncertainties as
random variables.

– To see this, consider again the example of the resistor to measure
current: the dominant uncertainty is the epistemic one arising from
the fact that we only know the value of the resistor to within the
±5% as given by its tolerance band. Consider what would happen
if you were to repeat the experiment many times: for each trial, the
(unknown) value of the resistor stays basically the same, so there will
be no fluctuation in the data you collect resulting from the unknown
value of the resistor. If you tried to compute the uncertainty in the
current based solely on the standard deviation of this set of trials, you
would almost certainly get an absurdly narrow confidence interval on
the current.8

– One of the simpler correct ways to propagate epistemic uncertainty
is what is called an “interval analysis” where you use the range of
values the uncertain input (in this case the value of the resistor) can
take to determine the range of values the uncertain output (in this
case the current) can take.

– Combining epistemic and aleatory uncertainty is, in general, a diffi-
cult problem. It is always preferred to reduce your epistemic uncer-
tainties as much as possible!

8You could, however, use a different resistor of the same type for each trial, in which case
the variability in the resistor would properly enter your measurements – this would permit
a correct statistical interpretation of the variability due to the uncertainty on the resistance.
But if you are going to do that much work, you should just measure the value of the one
resistor properly from the start!
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5 Linear regression

5.1 Example

Suppose you have a precision current source and a cheap voltmeter and you
want to know the Thévenin equivalent for a “black box” two terminal circuit.
You could measure the open-circuit voltage to get Vth then measure the voltage
across the terminals for a given current and solve for Rth. But, you will reduce
the impact of noise if you instead measure at a number of currents and find the
line that best goes through the data:

V = a+ bI (17)

This also has the advantage that you can take a good look at the data to
make sure there aren’t any nonlinear circuit elements hiding in the black box.
Example data are given in table 1 and the results are shown graphically in
figure 3. The current is assumed to be very precisely known compared to the
voltage. The voltage measurements are given with the number of figures that
would be reported on the face of the meter. The uncertainties were estimated
with reference to the manufacturer’s data sheet:9

σV = (1% of the reported value) + (least significant digit[= 0.1]) (18)

Using the analysis below, you can find

a = (0.08± 0.15)V, b = (21.8± 0.5) kΩ (19)

The data were produced starting from Vth = 0V and Rth = 22.5 kΩ, so the
analysis was rather successful.

Table 1: Measurements for linear regression example

I V σV

[mA] [V] [V]

0.1 2.2 0.122
0.2 4.6 0.146
0.3 6.6 0.166
0.4 8.6 0.186
0.5 11.1 0.211

9The data shown here were simulated, but this prescription is similar to that given in the
data sheet for Fluke Series III multimeters. The Fluke instruments use 0.3% – 1% was used
here to make the example more interesting.
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Figure 3: Example of linear regression. The vertical bars are error bars, which
are a way of graphically representing the width of the distribution describing the
value being measured – typically they are ±1σ, but this should always be spelled
out in context. Because error bars are linked to the probability distribution, you
should generally only include uncertainties that are modeled as such: typically
error bars should only include the aleatory components of the uncertainty. Here,
the error bars are ±1σ and were computed according to equation 18.

5.2 Details of linear regression

• Consider the situation where you have measured a quantity y at several
locations x: your observations consist of N pairs of (xi, yi).

• x is the independent variable and y is the dependent variable.

• It is often of interest to fit a model of the form10

y = a+ bx (20)

• Assume that the xi have negligible uncertainty
11 and that the uncertainty

10The method given here is easily applied to more complicated models – see the book by
Bevington and Robinson in the references for more details.

11When this assumption does not hold, a more sophisticated approach called errors-in-
variables regression must be used.
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in each of the yi follows a normal distribution with mean y(xi) = a+ bxi

and standard deviation σi.

• The probability of observing a given value of yi at location xi is then

Pi =
1√
2πσ2

i

exp

[
− (yi − y(xi))

2

2σ2
i

]
(21)

• The probability of observing the entire set of N points is then

P =

N∏
i=1

Pi =

N∏
i=1

(
1√
2πσ2

i

)
exp

[
−1

2

N∑
i=1

(yi − y(xi))
2

σ2
i

]
(22)

• The method of maximum likelihood takes the values for the coeffi-
cients a and b that maximize this probability to be the best estimates.

• Maximizing the probability is the same as minimizing the (weighted) sum
of the squared residuals:

χ2 =

N∑
i=1

(yi − y(xi))
2

σ2
i

=

N∑
i=1

(yi − a− bxi)
2

σ2
i

(23)

• Setting the derivatives with respect to a and b to zero and doing a bit of
algebra gives the solution:

a = µ∗
y − bµ∗

x (24)

b =
cov∗[x, y]

var∗[x]
(25)

where the weighted mean, weighted variance and weighted covari-
ance are

µ∗
x =

∑ xi

σ2
i∑
1
σ2
i

, µ∗
y =

∑ yi

σ2
i∑
1
σ2
i

(26)

var∗[x] =

∑ (xi−µ∗
x)

2

σ2
i∑
1
σ2
i

, cov∗[x, y] =

∑ (xi−µ∗
x)(yi−µ∗

y)

σ2
i∑
1
σ2
i

(27)

• For the special case where all of the uncertainties are the same12 (σi = σ),
the weighted quantities from above are replaced with their unweighted
counterparts:

a = y − bx (28)

b =

∑
(xi − x)(yi − y)∑

(xi − x)2
=

cov[x, y]

var[x]
(29)

x =
1

N

∑
xi, y =

1

N

∑
yi (30)

12A dataset having this property is said to be homoscedastic, as opposed to het-
eroscedastic.
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• The value of χ2 tells you how good the fit is: χ2/(N − 2) should be
approximately one if the fitted line goes through the data nicely and the
uncertainties were estimated properly.

• Using the uncertainty propagation equation, you can find the following
uncertainties in the fitted intercept and slope, as well as their covariance:

σ2
a = σ2

b

∑ x2
i

σ2
i∑
1
σ2
i

, σ2
b =

1

var∗[x]
∑

1
σ2
i

, σab = − µ∗
x

var∗[x]
∑

1
σ2
i

(31)

• For homoscedastic data, these simplify to

σ2
a = σ2

b

∑
x2
i

N
, σ2

b =
σ2

var[x]N
, σab = − xσ2

var[x]N
(32)

• Using these expressions, you can therefore obtain the slope b and an esti-
mate of its uncertainty σb.

• Many software packages are available that will carry out all of these op-
erations for you, but it is important to have this background in order to
properly interpret what the software is telling you.

6 References and resources

• Brief and complete (but often somewhat terse) introduction to classical
methods of data analysis: Bevington and Robinson, Data Reduction and
Error Analysis, third edition. McGraw-Hill, 2003.

• Clear introduction to probability theory (but with only a few extensions
to experimental statistics given): Bertsekas and Tsitsiklis, Introduction to
Probability, second edition. Athena Scientific, 2008.

• Introduction to data analysis using the Bayesian framework: Sivia and
Skilling, Data Analysis: A Bayesian Tutorial, second edition. Oxford,
2006.

• Nice summary of user-oriented recommendations for dealing with un-
certainty in measurements: http://physics.nist.gov/cgi-bin/cuu/

Info/Uncertainty/index.html

• International guidelines for expressing uncertainty in measurement: BIPM
JCGM 100:2008. http://www.bipm.org/utils/common/documents/jcgm/
JCGM_100_2008_E.pdf
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Assignment: Due 2/28

Required Problem

Write a program using the language of your choice that takes data (xi, yi) with
heteroscedastic uncertainties σi and computes:

• a

• b

• σa

• σb

• χ2

It is perfectly acceptable to write your program using an existing linear regres-
sion routine such as is present in most programming languages, just make sure
you can specify heteroscedastic uncertainties and obtain the uncertainties on
the fitted parameters.

Perform the following tests:

1. Run your code on the sample data from the lecture notes and make sure
the results match.

2. Plot the data with error bars and the fitted line to visually verify the fit.

3. Check the value of χ2/(N − 2) as described in the lecture notes.

There is an additional dataset on page 100 of the book by Bevington and Robin-
son if you want to double-check your code (or you can try making your own test
data set).

You will use this code for Extensive Lab 1, and your work will be checked on
a new dataset in lab on 2/28. Make sure you have what you need to demonstrate
your code with you that day (either test it on your lab computer ahead of time
or bring your laptop).

Bonus Problem

Using the uncertainty propagation equation it is quite straightforward to obtain
uncertainties on the result of evaluating y = a + bx. Obtain an expression for
this uncertainty as a function of x, and plot the “uncertainty envelope” y ± σ
on the figure asked for above.
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