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Increasing confidence in validation studies through
statistically rigorous inference of impurity transport
coefficient profiles

Motivation

• Validation of simulations requires rigorous inference of the
experimental quantities used for comparison.

• Current approaches to inferring impurity transport coefficients
suffer from issues with:
• Uniqueness of solution
• Complete accounting of uncertainty

Outline

• Measuring impurity transport coefficients on Alcator C-Mod.

• Current approaches and their shortcomings.

• Use of MCMC to infer impurity transport coefficients.
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Alcator C-Mod is uniquely equipped to make detailed
measurements of impurity transport

Multipulse laser blow-off impurity injector
provides controlled impurity injections [1]

• Multiple injections per shot: up to 10 Hz

• Typically inject CaF2: calcium is
non-intrinsic and non-recycling

X-ray imaging crystal spectrometer [2] and
VUV spectrometers [3] track the impurities

• XICS observes spatial profile of a single
charge state (Ca18+): more direct
interpretation than unresolved soft x-rays

• Two single-chord VUV spectrometers
measure Ca16+, Ca17+

[1] Howard et al. (2011), RSI [2] Ince-Cushman et al. (2008), RSI
[3] Reinke et al. (2010), RSI

XICS and VUV sightlines
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Inferring impurity transport coefficients is a nonlinear
inverse problem
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D(ρ)
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probability model

• Objective is to find D, V profiles that best reproduce the
observed brightnesses b on each of the diagnostics.

• Key issues are existence, uniqueness and stability of the
solution.
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Current approaches: maximum likelihood estimate (MLE)
MLE is a standard approach to
handle this problem. . .

D̂, V̂ = arg max
D,V

p(b|D,V )

• Pick D, V profiles which make
the observations most likely.

• Use standard optimization
techniques: assumption of
Gaussian noise makes this a
“least squares” problem.

• Need basis functions to
represent the profiles with a
finite number of variables:
typically piecewise linear
functions with fixed knots.

. . . but it has some potential
shortcomings
• Point estimate:

• Risk of underestimating
uncertainty.

• Not valid when there are
multiple extrema.

• Propagation of uncertainty in
ne , Te profiles requires an
additional step.
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Bayesian statistics provides a framework to overcome the
shortcomings of MLE

• Use Bayes’ rule to obtain the posterior distribution p(D,V |b),
including constraints/prior knowledge p(D,V ):

p(D,V |b) ∝ p(b|D,V )p(D,V )

• p(D,V |b) represents the state of knowledge about D, V after
having accounted for the data b.

• Working with p(D,V |b) avoids the issues of MLE.

• Can build a joint model that includes the effects of the ne , Te

profiles explicitly:

p(D,V , ne ,Te |b) ∝ p(b|D,V , ne ,Te)p(D,V )p(ne)p(Te)

p(D,V |b) =

∫
p(D,V , ne ,Te |b) dne dTe
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Markov chain Monte Carlo (MCMC) sampling enables a
complete accounting of uncertainty

• MCMC draws samples from
unnormalized probability
distribution such as
D(i),V (i) ∼ p(D,V |b) ∝
p(b|D,V )p(D,V ).

• Histogram to view p(D,V |b)
directly: nonuniqueness can be
identified immediately.

• Allows for better point
estimates, such as posterior
mean and variance:
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Chilenski et al. (2015), NFE[D|b] =

∫
Dp(D|b) dD ≈ 1

N

N∑
i=1

D(i)

var[D|b] =

∫
(D − E[D|b])2p(D|b) dD ≈ 1

N − 1

N∑
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(D(i) − E[D|b])2
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Analysis of C-Mod impurity transport data using these
techniques is under way

• Preliminary results from new analysis do not match previous
results.
• Non-uniqueness of solution?
• Poor choice of basis functions?
• Model selection using information criteria (DIC) [1] is

underway.

• Advanced techniques are being used to find “all” extrema [2].
• Computationally expensive: 10 000+ CPU-hours.
• Parallelizes well: theoretically linear up to ∼ 5000 processors.
• Code is being upgraded to use MPI, run on big clusters.

[1] Gelman et al. (2014), BDA3 [2] Vousden et al. (2015), arXiv:1501.05823
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Application of Bayesian inference allows rigorous
estimation of impurity transport coefficient profiles,
better confidence in validation studies

• The combination of XICS and LBO enables detailed studies of
impurity transport on Alcator C-Mod.

• Inferring impurity transport coefficient profiles using point
estimates such as maximum likelihood suffer from issues with:
• Uniqueness of solution
• Complete accounting of uncertainty

• New approach under development: use MCMC to find “all”
physically reasonable solutions to yield a complete accounting
of uncertainty.
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Backup slides
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Introduction to Bayes’ rule
Given a model with parameter vector θ and observations y , Bayes’
rule is:

f (θ|y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
f (y |θ)

prior︷︸︸︷
f (θ)

f (y)︸︷︷︸
evidence

• Likelihood: Probability of observing the data y given the
parameters θ.

• Prior: Distribution encoding any prior assumptions about the
parameters θ (positivity, typical values, etc.)

• Evidence: Probability of the data under the model. Just a
normalization constant for parameter estimation.

• Posterior: Probability distribution for the parameters θ given
the data y : the end-goal of the inference.
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Model selection with information criteria [1]
• Formalize the tradeoff between goodness of fit and complexity of

model: picking the model which minimizes an information criterion
is a way to avoid overfitting.

• Two common options:

• Akaike information criterion (AIC):

AIC = −2 ln p(b|D̂, V̂ ) + 2k

• D̂, V̂ = arg maxD,V p(b|D,V )
• k is the number of free parameters.
• Assumes posterior distribution is asymptotically normal.

• Deviance information criterion (DIC):

DIC = −2 ln p(b|E[D|b],E[V |b]) + 2peff

• Effective number of parameters peff has two definitions:

peff ,1 = 2 [ln p(b|E[D|b],E[V |b])− E[ln p(b|D,V )]]

peff ,2 = 2 var[ln p(b|D,V )]

• peff ,1 = peff ,2 = k for linear models with flat priors.
• Better accounts for the information in prior than AIC does.
• Easier to compute from MCMC output.

[1] Gelman et al. (2014), BDA3 12/9
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