Bayesian inference of impurity transport coefficient profiles

M.A. Chilenski, Y. Marzouk, M. Greenwald, N.T. Howard, J.E. Rice, and A.E. White

May 1, 2015

Supported by USDoE award DE-FC02-99ER54512. Supported in part by a DOE SCGF fellowship, administered by ORISE-ORAU under contract DE-AC05-06OR23100.

Increasing confidence in validation studies through statistically rigorous inference of impurity transport coefficient profiles

Motivation

- Validation of simulations requires rigorous inference of the experimental quantities used for comparison.
- Current approaches to inferring impurity transport coefficients suffer from issues with:
 - Uniqueness of solution
 - Complete accounting of uncertainty

Outline

- Measuring impurity transport coefficients on Alcator C-Mod.
- Current approaches and their shortcomings.
- Use of MCMC to infer impurity transport coefficients.

Alcator C-Mod is uniquely equipped to make detailed

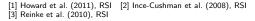
measurements of impurity transport

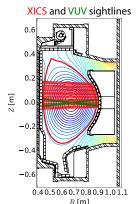
Multipulse laser blow-off impurity injector provides controlled impurity injections [1]

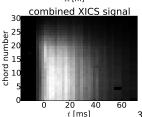
- Multiple injections per shot: up to 10 Hz
- Typically inject CaF₂: calcium is non-intrinsic and non-recycling

X-ray imaging crystal spectrometer [2] and VUV spectrometers [3] track the impurities

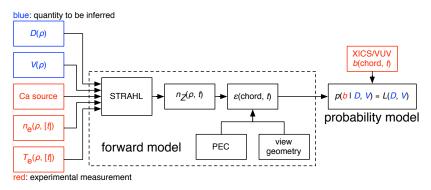
- XICS observes spatial profile of a single charge state (Ca¹⁸⁺): more direct interpretation than unresolved soft x-rays
- Two single-chord VUV spectrometers measure Ca¹⁶⁺, Ca¹⁷⁺







Inferring impurity transport coefficients is a nonlinear inverse problem



- Objective is to find D, V profiles that best reproduce the observed brightnesses b on each of the diagnostics.
- Key issues are existence, uniqueness and stability of the solution.

Current approaches: maximum likelihood estimate (MLE)

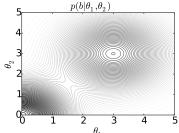
MLE is a standard approach to handle this problem...

$$\hat{D}, \hat{V} = \underset{D, V}{\operatorname{arg\,max}} p(b|D, V)$$

- Pick *D*, *V* profiles which make the observations most likely.
- Use standard optimization techniques: assumption of Gaussian noise makes this a "least squares" problem.
- Need basis functions to represent the profiles with a finite number of variables: typically piecewise linear functions with fixed knots.

... but it has some potential shortcomings

- Point estimate:
 - Risk of underestimating uncertainty.
 - Not valid when there are multiple extrema.
- Propagation of uncertainty in n_e, T_e profiles requires an additional step.



Bayesian statistics provides a framework to overcome the shortcomings of MLE

• Use Bayes' rule to obtain the posterior distribution p(D, V|b), including constraints/prior knowledge p(D, V):

$$p(D, V|b) \propto p(b|D, V)p(D, V)$$

- p(D, V|b) represents the state of knowledge about D, V after having accounted for the data b.
- Working with p(D, V|b) avoids the issues of MLE.
- Can build a joint model that includes the effects of the n_e, T_e profiles explicitly:

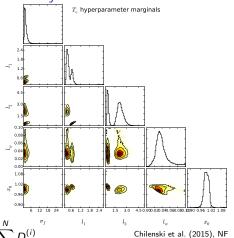
$$p(D, V, n_e, T_e|b) \propto p(b|D, V, n_e, T_e)p(D, V)p(n_e)p(T_e)$$
$$p(D, V|b) = \int p(D, V, n_e, T_e|b) dn_e dT_e$$

Markov chain Monte Carlo (MCMC) sampling enables a complete accounting of uncertainty

- MCMC draws samples from unnormalized probability distribution such as $D^{(i)}, V^{(i)} \sim p(D, V|b) \propto p(b|D, V)p(D, V)$.
- Histogram to view p(D, V|b) directly: nonuniqueness can be identified immediately.
- Allows for better point estimates, such as posterior mean and variance:

mean and variance:
$$\mathbb{E}[D|b] = \int Dp(D|b) \, \mathrm{d}D \approx \frac{1}{N} \sum_{i=1}^N D^{(i)} \, \frac{\sigma_j}{D^{(i)}} \, \frac{l_1}{D^{(i)}} \, \frac{l_2}{D^{(i)}} \, \frac{l_2}{D^{(i)}} \, \frac{l_2}{D^{(i)}}$$
 Chilenski et

$$\operatorname{var}[D|b] = \int (D - \mathbb{E}[D|b])^2 \rho(D|b) \, dD \approx \frac{1}{N-1} \sum_{i=1}^{N} (D^{(i)} - \mathbb{E}[D|b])^2$$



Analysis of C-Mod impurity transport data using these techniques is under way

- Preliminary results from new analysis do not match previous results.
 - Non-uniqueness of solution?
 - Poor choice of basis functions?
 - Model selection using information criteria (DIC) [1] is underway.
- Advanced techniques are being used to find "all" extrema [2].
 - Computationally expensive: 10 000+ CPU-hours.
 - Parallelizes well: theoretically linear up to \sim 5000 processors.
 - Code is being upgraded to use MPI, run on big clusters.

[1] Gelman et al. (2014), BDA3 [2] Vousden et al. (2015), arXiv:1501.05823

Application of Bayesian inference allows rigorous estimation of impurity transport coefficient profiles, better confidence in validation studies

- The combination of XICS and LBO enables detailed studies of impurity transport on Alcator C-Mod.
- Inferring impurity transport coefficient profiles using point estimates such as maximum likelihood suffer from issues with:
 - Uniqueness of solution
 - Complete accounting of uncertainty
- New approach under development: use MCMC to find "all" physically reasonable solutions to yield a complete accounting of uncertainty.

Backup slides

Introduction to Bayes' rule

Given a model with parameter vector $\boldsymbol{\theta}$ and observations \boldsymbol{y} , Bayes' rule is:

$$\underbrace{f(\theta|\mathbf{y})}_{\text{posterior}} = \underbrace{\frac{f(\mathbf{y}|\theta)}{f(\theta)}}_{\substack{\text{evidence}}} \underbrace{\frac{f(\mathbf{y}|\theta)}{f(\theta)}}_{\text{evidence}}$$

- **Likelihood**: Probability of observing the data y given the parameters θ .
- **Prior**: Distribution encoding any prior assumptions about the parameters θ (positivity, typical values, etc.)
- **Evidence**: Probability of the data under the model. Just a normalization constant for parameter estimation.
- **Posterior**: Probability distribution for the parameters θ given the data y: the end-goal of the inference.

Model selection with information criteria [1]

- Formalize the tradeoff between goodness of fit and complexity of model: picking the model which minimizes an information criterion is a way to avoid overfitting.
- Two common options:
 - Akaike information criterion (AIC):

$$AIC = -2 \ln p(b|\hat{D}, \hat{V}) + 2k$$

- \hat{D} , $\hat{V} = \arg\max_{D,V} p(b|D,V)$
- *k* is the number of free parameters.
- Assumes posterior distribution is asymptotically normal.
- Deviance information criterion (DIC):

$$DIC = -2 \ln p(b|\mathbb{E}[D|b], \mathbb{E}[V|b]) + 2p_{eff}$$

• Effective number of parameters p_{eff} has two definitions:

$$\begin{aligned} p_{\textit{eff},1} &= 2 \left[\ln p(b|\mathbb{E}[D|b], \mathbb{E}[V|b]) - \mathbb{E}[\ln p(b|D,V)] \right] \\ p_{\textit{eff},2} &= 2 \operatorname{var}[\ln p(b|D,V)] \end{aligned}$$

- $p_{eff,1} = p_{eff,2} = k$ for linear models with flat priors.
- Better accounts for the information in prior than AIC does.
- Easier to compute from MCMC output.