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Having better uncertainty estimates on input profiles and
code outputs improves the validation process

• Many quantities are not measured directly, instead are inferred
using complicated analysis codes (e.g., Qi , Qe from TRANSP
[1] or DZ , VZ from STRAHL [2]).

• Credible error estimates are critical when comparing these
results to simulations/theory.

• A variety of techniques are being tested to obtain error
estimates in a rigorous, automated manner.

• This poster presents recent progress in using Gaussian process
regression (GPR) to fit profiles and extract samples.

• The samples are used with STRAHL to get uncertainties on
impurity transport coefficients D, V for injected Ca in an
Alcator C-Mod L-mode.
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Motivation: Better profile fitting/sampling for improved
code comparisons

CODE
Run each input sample 

through code to produce 
output realizations

• To quantify the uncertainty in the outputs of a code it is
necessary to produce perturbed samples of profile inputs and
run them through the code.

• This has traditionally been done with splines: see slide 6.

• This poster presents a better way of fitting profiles with
built-in support for computing the uncertainty in the fit and
its gradients as well as a straightforward way of drawing input
samples.
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Overview: What Gaussian process regression (GPR) does

• GPR fits a smooth curve to a set of noisy data points – such
as measurements of the Te profile from Thomson scattering.

• Unlike other techniques (such as splines), GPR does this in a
fundamentally probabilistic framework.

• GPR provides built-in estimates of the uncertainty in the fit:
no extra steps are required to put an uncertainty envelope on
your fit.

• It is very easy and efficient to draw random samples to be used
in a Monte Carlo uncertainty quantification of a code that
takes profiles as inputs.

• GPR lets you easily incorporate gradient information into the
fit, both in terms of adding constraints and in terms of
getting estimates of the uncertainty in the gradient of the fit.
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What advanced uncertainty quantification techniques,
Gaussian process regression can contribute

• Provide better confidence in error estimates.

• Obtain reliable results with fewer expensive simulation runs.

• Provide statistically defensible, automated fits to entire
profiles without the need for time-consuming manual tuning.
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Option: Perturb individual data points, fit with spline
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• Often requires manual
supervision.

• Goodness versus complexity
of fit requires extra care.

• Handling multivariate data
(y(R, Z , φ, t)) is painful.

Notes on the plots

• Vertical red line indicates the magnetic axis.

• Data points are the average in a single channel over the flattop

• Vertical error bars are ±1σ of Te within a channel. Horizontal error
bars are ±1σ of mapped Rmid but are not included in the analysis.
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Gaussian process regression (GPR) provides a better way
to fit profiles and produce input samples

GPR is a Bayesian non-parametric regression technique [3]

Bayesian: A probability distribution called the prior encodes
assumptions about the properties of the data.

Non-parametric: Data are not reduced into parameters.
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Univariate GPR on TS data

• Distribution of functions,
can sample directly.

• Variance gives the
uncertainty in the fit.

• Simple to get gradients
and their uncertainties.

• Generalization to
multivariate data is trivial.
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Terms and symbols used

GPR: Gaussian process regression

observations: The data to be fit: y(X), y ∈ Rn, X ∈ RD×n

predictions: The values of the smooth fit: y∗(X∗),
y∗ ∈ Rn∗ , X∗ ∈ RD×n∗

covariance function: Function giving the covariance between two
points: k(x , x ′), x , x ′ ∈ RD

covariance matrix: k evaluated between all cases: K = k(X, X),
K ∈ Rn×n, K∗ = k(X, X∗), K∗ ∈ Rn×n∗

hyperparameters: The parameters of the covariance function k .

In other words:

• n observations of quantity y are taken at n (D-dimensional)
locations x and combined into vector y and matrix X.

• Predictions y∗ are then made at n∗ locations x∗ and combined
into vector y∗ and matrix X∗.

• The matrix K consists of the covariance function k evaluated
pairwise between each of the points x in X.
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A Gaussian process is a distribution over functions
For any set of points X, the value of y(X) is distributed as

y ∼ N (m(X), k(X, X))

• This is an n-dimensional multivariate normal, where y ∈ Rn.
• m(x) is the mean function
• k(x , x ′) is the covariance function, which determines the
spatial correlation between points:

covariance
function of prior
encodes that we 
expect close points to 
be strongly correlated...

...and distant 
points to be 
weakly correlated

Common choice: squared
exponential (SE)

kSE(r) = σ2f exp

(
− r2

2`2

)
r =

∣∣x − x ′∣∣
` sets the length scale of drop-off in
covariance, is not the same as the
gradient scale length!
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Simple illustration: one observation and one prediction

• Start with the prior probability
density between observations y(X)
and predictions y∗(X∗):
p(y∗, y) = N (0, k([X∗,X], [X∗,X]))

• Condition on observations to get
posterior for the predictions y∗:
p(y∗|y) = p(y∗, y)/p(y)

• The posterior is also a multivariate
normal, but with a more
complicated mean and covariance
function.

• The posterior mean is the fit, the
posterior variance is the
uncertainty in the fit.
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Selection of hyperparameters is accomplished with
standard statistical techniques

Several levels of sophistication have been explored to select the
hyperparameters θ = [σf , `, . . . ] (as in the k ’s on slides 9 and 15):

Simplest approach: maximum likelihood (ML) Maximize the
likelihood of the observations y given hyperparameters θ:

θ̂
ML

= argmaxθ p(y |θ)
Next level: maximum a posteriori (MAP) Maximize the probability

of the hyperparameters θ given the observations y :
θ̂
MAP

= argmaxθ p(θ|y)
Most complete: marginalization Marginalize the hyperparameters

θ out of the posterior for the predictions y∗ given the
observations y :

p(y∗|y) =
∫

p(y∗|θ, y)p(θ|y) dθ

This integral is carried out efficiently using Markov chain
Monte Carlo (MCMC) techniques [4, 5].
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Getting gradients and their uncertainties is straightforward
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The gradient of a Gaussian process
is a Gaussian process:

cov

(
yi ,

∂yj
∂xdj

)
=
∂k(x i , x j)

∂xdj

cov

(
∂yi
∂xdi

,
∂yj
∂xdj

)
=
∂2k(x i , x j)

∂xdi ∂xdj

• Gradient equality constraint:
just add a datapoint!

• Gradient predictions: predictive
distribution contains the
uncertainty.
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Drawing random samples of Te , dTe/dR is straightforward
Just sampling a multivariate normal to draw a random sample ỹ∗
from p(y∗|y ,θ):

ỹ∗ = m + Lu

m = K(X∗, X)[K(X, X) + Σn]
−1y (the predictive mean)

Kp = LLT (predictive covariance

matrix)

u ∼ N (0, I) (n∗ independent standard

normal variables)

More powerful way of writing the matrix square root using
eigendecomposition of predictive covariance matrix:

Kp = QΛQ−1 = QΛ1/2(QΛ1/2)T

(Because Kp is symmetric, Q−1 = QT.)

Can truncate eigendecomposition to reduce dimensionality.
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Example of simultaneous random samples of Te , dTe/dR
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Univariate GPR on TS data
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Fitting pedestal requires non-stationary covariance function

Gibbs kernel [6]: ` is an arbitrary function of x

kG(x , x ′) = σ2
f

(
2`(x)`(x ′)

`2(x) + `2(x ′)

)1/2

exp

(
− |x − x ′|2

`2(x) + `2(x ′)

)

• Length scale used here:

` =
`1 + `2

2

− `1 − `2
2

tanh
x − x0
`w

• Either pick σf , `1, `2, `w
and x0 through MAP
(shown here) or by
marginalizing with MCMC.

• ne , dne/dψn were set to ∼ 0
at ψn = 1.1, the midplane
location of the limiter. 15/27



Marginalizing hyperparameters using MCMC: the goal

• MAP and ML estimators are point estimates – they do not
account for the fact that there is uncertainty in the
hyperparameters θ.

• The most complete accounting of uncertainty is obtained by
marginalizing over the hyperparameters (see slide 11).

• Markov chain Monte Carlo (MCMC) [4, 5] is used to produce
random draws θ̃ of the hyperparameters distributed according
to the posterior for the hyperparameters θ given the
observations y : θ̃ ∼ p(θ|y).

• These draws are then used with the scheme to draw random
samples given on slide 13 to produce random draws ỹ∗ of the
smoothed profile: ỹ∗ ∼ p(y∗|y ,θ = θ̃).

• These draws are then either averaged to give the mean
smoothed profile, or are used as input samples to a code.
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Marginalizing hyperparameters using MCMC: the result
Visualization of 5-d posterior distribution for
hyperparameters given observations, p(θ|y):

This �gure presents univariate marginals for the 
hyperparameters along the diagonal and
bivariate marginals between each pair of
hyperparameters in the lower half.

The width of a univariate marginal corresponds 
to the uncertainty in the hyperparameter.

The bivariate marginals show the correlations 
between hyperparameters.
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• Univariate marginals are
peaked: the observations
provide sufficient
information to dominate
over the uniform
hyperpriors.

• Marginals are unimodal:
permits unambiguous
interpretation of the fit.

• Profiles are given on
slides 21 and 22
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gptools: An extensible, object-oriented Python package for
multivariate GPR including gradients

• Available GPR codes lack one or more critical features:
• Ability to both constrain and predict gradients.
• Straightforward way to draw random samples.

• gptools was written to meet these needs:
• Object-oriented structure.
• Interface for easy data fusion and application of constraints.
• SE, Gibbs, Matérn and RQ kernels with support for arbitrary

orders of differentiation.

• Available on GitHub: www.github.com/markchil/gptools
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Impurity transport in Alcator C-Mod is explored using a
laser blow-off impurity injector

Controlled injections are a powerful tool to probe transport

• Small (nonperturbative) injection of a non-intrinsic,
non-recycling impurity (such as calcium) enables systematic
study of impurity transport [7, 8].

• Larger injections are used to induce cold pulses to investigate
non-local thermal transport.

• Injection of molybdenum used to probe poloidal asymmetries
and their effects.

Hardware overview

• Motorized steering for between-shot positioning.

• Piezoelectric steering for in-shot movement of beam.

• Fast steering and 10Hz laser repetition rate enables multiple
injections into a shot.
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Impurity transport coefficients are inferred using STRAHL
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Figure originally from [7].

• Model the impurity flux as ΓZ = −D∇nZ + VnZ
• Given the ne , Te profiles and a guess for the D, V profiles,
STRAHL produces a prediction of the evolution of the
impurity density profile.

• This is converted to the Ca18+ emissivity profile, which is
line-integrated and compared to the brightness measured with
an x-ray imaging crystal spectrometer [9].

• The D and V profiles are iterated upon to find the best fit.
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GPR sampling has been applied to Ca transport in C-Mod

• 800 kA, 5.4T L-mode with
1MW ICRF.

• Light band is ±3σ, dark
band is ±1σ.

• Shape of ne profile is similar
between the spline fit, the
MAP estimate and the fully
marginalized estimate.

• The uncertainty in dne/dψn

and a/Lne increases
noticeably with
marginalization –
marginalization is
essential to properly
capture the uncertainty in
the gradient.
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• Two Thomson scattering
(TS) and three electron
cyclotron emission (ECE)
diagnostics were combined
to reduce uncertainty.

• The fit is robust against the
apparent outliers near
ψn = 0.2 and 0.5.

• Marginalization over the
hyperparameters again
showed a substantial effect
on the uncertainty in the
gradient.
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Initial GPR results mostly agree with previous results
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Comparison of STRAHL results
for different fitting schemes

• Only the ±1σ uncertainty
envelope is shown.

• The results are not trusted
outside of the range shown
(0 < r/a < 0.6).

• Within this domain, the
spline-based approach and
the Gaussian process-based
approach produce similar
values.
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GPR-based approach shows better convergence
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Convergence at r/a=0.45

• The previous spline-based
calculation might not be
fully converged.

• Extra MAP, MCMC samples
were run to ensure
convergence.

• Adding samples is trivial
with GPR, would have
required nontrivial manual
effort with previous
workflow.

• MAP estimate appears to
converge faster than MCMC
at some radii, but also tends
to have more jumps.
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Gaussian process regression shows promise as a tool to
make uncertainty estimation more rigorous, more
automated

• GPR is a Bayesian nonparametric regression technique.

• Naive Monte Carlo sampling has been applied to GPR fits of
the ne , Te profiles input into the STRAHL code to determine
the uncertainties in the D, V profiles.

• The initial results seem to mostly agree with the previous
uncertainty estimates using spline fits.

• GPR seems to show better convergence than the use of
spline-based samples.
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Future work

• Assess advanced sampling methods (LHS, QMC) to improve
convergence speed.

• Apply to other codes and other plasma conditions.

• A paper on this work is in preparation and will be
submitted for publication soon.
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