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Multi-pulse laser blow-o� impurity injector:
controlled introduction of impurities
Controlled impurity injections are a very
powerful tool to probe transport

• Small (nonperturbative) injection of a non-intrinsic, non-
recycling impurity (such as calcium) enables systematic study
of impurity transport [1, 2].

• Larger injections are used to induce cold pulses to investigate
non-local thermal transport [3].

Hardware overview

• Motorized steering for between-shot positioning.
• Piezoelectric steering for in-shot movement of beam.
• Fast steering and 10Hz laser repetition rate enables multiple
injections into a shot.

• Have utilized up to nine injections in a single discharge.
• Iris diaphragm and linear translation stage enables control
over the spot size and power density at slide.

Impurity transport coe�cient pro�les have been
successfully measured for L-mode plasmas
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• Iterated with the STRAHL code [4] to �nd the pro�les of the
di�usivity D and convective pinch velocity V that match the
observed evolution of the Ca XIX emission pro�le.

• Comparisons to GYROhave been performed, and have found
that the GYRO predictions are within the domain of plausi-
bility de�ned by the experimental uncertainties [1].

Present work seeks to extend, enhance previous
techniques

• Extend to EDA H-mode regime.
• Improve quanti�cation of uncertainties.
• Uncertainty quanti�cation (UQ) requires repeated runs of
various codes throughout the simulation validation pipeline:
– Requires automated tools for input preparation and code

execution.
– Requires intelligent UQmethodology to minimize number

of computationally-expensive runs needed to adequately
sample uncertain parameter space.

• UQmethodology has been applied to preliminary automated
pro�le �tting tool. There are still some issues that must be
resolved.

A variety of diagnostics tracks the injection
An x-ray imaging crystal spectrometer observes
emission pro�les from high charge states

• Calcium is typically injected: non-
intrinsic and non-recycling.

• The spectrometer can be con�g-
ured to view emission from either
Ca XIX or Ca XX.

• 32 spatial channels, up to 6ms
time resolution.

• Combining the data from multi-
ple injections at 10Hz enables an
e�ective time resolution of 2ms.

Two VUV grating spectrometers observe line-
integrated emission from lower charge states
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• Two compact,
VLS grating, �at-
�eld spectrome-
ters from LLNL
EBIT lab [5, 6].

• 1–6.5 nm and
10–29 nm spec-
tral ranges.

• Line-integrated
core view.

• 2ms frame rate.

Additional diagnostics provide further
information on the injection
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Ip = 530 kA, 700 kW LHCD

Ca I

Ca XVII

radiated power (kW)

exponential decay,
       τimp = 14 ms

narrow source:
0.2 ms FWHM

delayed clusters

double peaks
caused by clusters

• A variety of so�
x-ray diagnostics
and bolometers
provides informa-
tion on radiation
from all charge
states.

• A �ltered PMT
coaxial with the
injector measures
the Ca I impurity
source.

A broad range of EDA H-mode conditions
has been explored
A current/power scan was used to access a wide
range of νe�
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• Density peaking in H-
modes has been observed
[7] to scale with
νeff = 0.1Zeff⟨ne⟩R/⟨Te⟩2.

• A scan of Ip and Picrf was
used to modulate νeff.

• Ca was injected into the
plasmas in order to look
for a connection to the
main ion particle trans-
port.
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Initial analysis of global con�nement results
shows dependencies on νe� and q95
More work is needed to explain the outliers and look at the be-
havior of the impurity density and transport coe�cient pro�les.
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The circled points can 
potentially be thrown out: 
the quality of the data/�t 
for them is questionable.

Automated pro�le smoothing tools are
under development to enable better
quanti�cation of uncertainty in the analysis
• A key improvement under development for application to
these data is a more rigorous approach to uncertainty quan-
ti�cation (UQ).

• Zero-interaction tools for pro�le smoothing and other input
preparation tasks are needed to enable UQ studies.

• Using the bivariate spline tools from SciPy/FITPACK [8, 9]
to simultaneously smooth in space and time.

• No attempt has yet been made to account for sawteeth.
• Using a weighted least-squares smoothing spline with explic-
itly speci�ed knots.
– Weighting by 1/σTe mitigates probable outliers.
– Explicit speci�cation of knots allows capture of �ne fea-

tures while still keeping the rest of the pro�le smooth.
• Testing so far has been on TS L-mode core Te pro�les.
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Clearly bad points are
automatically discarded

Addition of edge TS 
data will attempt to 
improve �t near edge

Further re�nements will 
attempt to constrain behavior 
near core better
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Bivariate spline
smooths in both
space and time,
in contrast to
approaches that
�t one time-slice
at a time.

The spline
allows the use of
a nonuniform
spatial grid, han-
dles the change
of the TS mid-
plane mapping
in time.

Work has begun on systematic application of uncertainty quanti�cation
• Initial goal: assess UQ methods and tools applied to pro�le
smoothing/�tting, obtain error estimates for the gradients.

• Next step: apply to other analysis steps throughout the simu-
lation validation pipeline, such as TRANSP and STRAHL.

• Work to date has focused on random sampling techniques
using the DAKOTA framework [10]:
– Supports both Monte Carlo and Latin hypercube sampling.
– Supports generalized polynomial chaos expansion.
– Bayesian UQ methods are under development.

Two types of sampling have been investigated

• Monte Carlo sampling randomly samples the uncertain input
parameters according only to their probability distributions.

• Latin hypercube sampling (LHS) �rst divides the domain of
each quantity into equal probability cells.

• Then, random samples are placed such that there is exactly one
sample in any given cell for any given input.

• This ensures that any given input variable has its complete
domain sampled [11, 12].

T(t1, R1)

Random Monte Carlo Latin Hypercube

T(t1, R1)

T(t2, R2)T(t2, R2)

(measured)(measured)

(measured)(measured)

Future work
• Re�ne �tting algorithm:
– Incorporate data from other diagnostics.
– Attempt to handle sawteeth.
– Constrain behavior at ends of �t.

• Explore e�ect of errors in magnetic reconstruction.
• Explore additional UQ techniques.
• Apply UQ to other steps in simulation pipeline.

LHS shows up to 10x faster convergence for
pro�le �tting task
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The lighter shaded regions are the 
extreme value envelope, the darker 
shaded regions are the ±1σ envelope.
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Uncertainty increases 
around bad channel 
and core

Unconstrained �t in core 
leads to large error bar here
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Weighting by 1/error 
mitigates e�ect of 
bad TS points/outliers
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