Towards a Bayesian analysis of
impurity transport data

M.A. Chilenski, Y. Marzouk, M. Greenwald,
N.T. Howard, J.E. Rice, and A.E. White

MIT PSFC/Alcator C-Mod
*MIT Aero/Astro, Uncertainty Quantification Group

First IAEA Technical Meeting on Fusion Data Processing,
Validation and Analysis
Nice, France
June 3, 2015

Supported by USDoE award DE-FC02-99ER54512. Supported in part by a DOE SCGF fellowship, administered by
ORISE-ORAU under contract DE-AC05-060R23100. Computations using STRAHL were carried out on the MIT
PSFC parallel AMD Opteron/Infiniband cluster Loki.

1/12



Increasing confidence in validation studies through
statistically rigorous inference of impurity transport
coefficient profiles
Motivation
e Validation of simulations requires rigorous inference of the

experimental quantities used for comparison.

e Current approaches to inferring impurity transport coefficients
suffer from issues with:

e Uniqueness of solution
e Complete accounting of uncertainty

QOutline

e Measuring impurity transport coefficients on Alcator C-Mod.

Current approaches and their shortcomings.

Fully Bayesian inference of impurity transport coefficients
using MCMC.

Preliminary results.
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Alcator C-Mod is uniquely equipped to make detailed

measurements of impurity transport

Multipulse laser blow-off impurity injector
provides controlled impurity injections [1]

e Multiple injections per shot: up to 10 Hz

e Typically inject CaF,: calcium is
non-intrinsic and non-recycling
X-ray imaging crystal spectrometer [2] and
VUV spectrometers [3] track the impurities

e XICS observes spatial profile of a single
charge state (Ca'®"): more direct
interpretation than unresolved soft x-rays

e Two single-chord VUV spectrometers
measure Ca16+, Cal™t

[1] Howard et al. (2011), RSI  [2] Ince-Cushman et al. (2008), RSI
[3] Reinke et al. (2010), RSI
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Inferring impurity transport coefficients is a nonlinear
inverse problem

blue: quantity to be inferred
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red: experimental measurement

e Objective is to find D, V profiles that best reproduce the
observed brightnesses b on each of the diagnostics.

e Key issues are existence, uniqueness and stability of the
solution.

[1] Dux (2006), IPP Report 10/30
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Current approaches: maximum likelihood estimate (MLE)

MLE is a standard approach to

handle this problem. ..

D,V = argmaxp(b|D, V)
D,V

e Pick D, V profiles which make
the observations most likely.

e Use standard optimization
techniques: assumption of
Gaussian noise makes this a
“least squares” problem.

e Need basis functions to
represent the profiles with a
finite number of variables:
typically piecewise linear
functions with fixed knots.

... but it has some potential

shortcomings
e Point estimate:

e Risk of underestimating

uncertainty.

e Not valid when there are

multiple extrema.

o Propagation of uncertainty in

ne, Te profiles requires an

additional step.

p(bl6;.0,)
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Bayesian statistics provides a framework to overcome the
shortcomings of MLE

o Use Bayes' rule to obtain the posterior distribution p(D, V|b),
including constraints/prior knowledge p(D, V):

p(D, V|b) « p(b|D, V)p(D, V)

e p(D, V|b) represents the state of knowledge about D, V after
having accounted for the data b.

e Working with p(D, V|b) avoids the issues of MLE.
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Markov chain Monte Carlo (MCMC) sampling enables a
complete accounting of uncertainty

] T, hyperparameter marginals

e MCMC draws samples from

unnormalized probability i N
distribution such as T
D, v() ~ p(D, V|b) x Ny
LA R TN

directly: nonuniqueness can be _
identified immediately.

A

e Allows for better point

b
e Histogram to view p(D, V|b) o B : '

estimates, such as posterior

mean and variance:
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Chilenski et al. (2015), NF

N
_ ~ 0]
E[D|b] —/Dp(D|b)dD~ NZD
N

var[D|b] = / (D~ E[D|b])*p(D|b)dD ~ 1= > (D — E[D|b])*
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Multimodal posterior necessitates advanced MCMC

o Affine-invariant ensemble sampler (ES) .
[1 2] 10’ convergence of cold chains

e Eliminates need to tune proposal
distribution.

g10°
e But, cannot efficiently sample & some chains
distributi ith I d 4 get stuck in
Istributions with well-separate & [\ another mode
modes. 210

but parallel tempering
allows them to escape

e Parallel tempering (PT) [3]

‘
o Sample from 10761000 2000 3000 4000 5000 6000

step
p(b|D, V)/Tp(D, V) for e APT with ES in each
multiple values of 1 < T < o0.
e Exchange of information between
adjacent T lets chains move

temperature.

® 200 walkers per temperature, 25

temperatures.
between modes.
e Plot shows — In p(D, V|b) on a
e Adaptive parallel tempering (APT) [4] log scale: lower value = better fit.

e Automatically tune T ladder.

[1] Goodman and Weare (2010), CAMCS  [2] Foreman-Mackey et al. (2013), PASP
[3] Earl and Deem (2010), PCCP  [4] Vousden et al. (2015), arXiv:1501.05823 8/12



PRELIMINARY results do not match previous analysis

Comparison of possible solutions

— previous analysis/MLE “boundary condition”.
-3 COEff!CIentS, no free knots region
4 coefficients, 1 free knot,

~ UNCONVERGED

D [m?/s]

Lo CoLNWAGLO

g T
0 02 04 06 08 10
New analysis: /@

o Cubic B-spline basis functions.

Previous analysis:
e Piecewise linear basis functions.

e MLE without estimate of width
of posterior distribution.

e Behavior in r/a > 0.6 thought
to be only weakly constrained.

e But, uncertainty there too
small to be consistent with
this.

e APT to handle multiple maxima, width of posterior distribution.

e Uncertainty estimate in r/a > 0.6 still too small to be consistent
with assumed lack of knowledge there.

Cases shown are likely overconstrained.

Models with more free parameters are running now, but have not
found any reasonable maxima yet.
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Predicted brightnesses are similar between all three cases

b [AU]
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previous analysis/MLE

3 coefficients, no free knots
4 coefficients, 1 free knot, UNCONVERGED

Agreement on

Agreement on

core XICS chords is good in all cases.

0.08

outer XICS chords shows widest variation — 4
coefficient case seems to do best job.

Agreement on VUV spectrometer is reasonable in all cases.

This shows the importance of accounting for the possibility of
multiple solutions.

10/12



Next step: include uncertainty in n., T. profiles
Form joint posterior distribution, now also conditional on the
profile measurements d:

p(D, V, ne, Te|by d) = p(D, V|nea Te, b, d)p(ne7 Te|ba d)
Use Gaussian processes for ne, Te [1]:
p(ne|d) = N(m(p), k(p; p))

Reduce dimension of parameter space by approximating this with
truncated eigendecomposition:

ne = QN2u+m(p), u~N(©O,1), kip,p)=QNQ"
Find marginal posterior distribution for D, V using MCMC:
p(D, V|b,d) = /p(D, V,ne, Te|b,d)dnedTe

[1] Chilenski et al. (2015), NF
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Application of Bayesian inference allows rigorous
estimation of impurity transport coefficient profiles,
better confidence in validation studies

e The combination of XICS and LBO enables detailed studies of
impurity transport on Alcator C-Mod.
e Inferring impurity transport coefficient profiles using point

estimates such as maximum likelihood suffers from issues
with:
e Uniqueness of solution
o Complete accounting of uncertainty
e New approach under development: use MCMC to find “all”
physically reasonable solutions to yield a complete accounting
of uncertainty.
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Backup slides
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Model selection with information criteria [1]

e Formalize the tradeoff between goodness of fit and complexity
of model: picking the model which minimizes an information
criterion is a way to avoid overfitting.

e Common choice: Deviance information criterion (DIC)
DIC = —21n p(b| E[D|b], E[V|b]) + 2per
o Effective number of parameters pes has two definitions:

perr1 = 2 [In p(bl EID|], E[V|b]) — Elin p(b|D, V)]
Pefr 2 = 2var[ln p(b|D, V)]

® DPeff1 = Pefr,2 = true # of parameters for linear models with
flat priors.
e Easy to compute from MCMC output.

[1] Gelman et al. (2014), BDA3
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B-spline basis functions are used to obtain a smooth
profile, impose constraints

Basis functions for 3 coefficient case, Basis functions for 4 coefficient case,
no free knots 1 free knot
1 Basis functions for D 1. Basis functions for D
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0 -
1 Basis functions for vV 1 Basis functions for V
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0'8.0 02 04 06 0.8 1.0 0'8.0 02 04 06 0.8 1.0

r/a r/a
e dD/dr=0atr/a=0
e D > 0 everywhere
e V(0)=0

15/12



Goodness of fit is comparable between all three solutions

10— XICScore 0.20—XICS outer i ymm—
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t [s] t [s] t [s]
= previous analysis/MLE

- 3 coefficients, no free knots

- 4 coefficients, 1 free knot, UNCONVERGED

case —Inp(b|D, V) ~ x?
previous analysis/MLE 3.80 x 10%
3 coefficients, no free knots 2.15 x 104
4 coefficients, 1 free knot 1.81 x 10*
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Temperature ladder adaptation for 3 coefficient case
3 coefficients

10°

101}

0

1000 2000 3000 4000 5000 6000

step
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Temperature ladder adaptation for 4 coefficient case
10° 4 coefficients

0 1000 2000 3000 4000 5000 6000 7000
step
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Posterior distribution for 3 coefficient case
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Posterior distribution for 4 coefficient case
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Profile fitting with Gaussian process regression (GPR)

Random realizations of GP

o Established statistical/machine ~ _*®
learning technique [1]. E
. . = 1.2
e Expresses profile in terms of = ~and distant
. : ; 1.0 :
(spatial) covariance of 3 points to be
o © 0.8 weakly correlated
multivariate normal (MVN) & |
. . . z 0.6 covariance
distribution. S | kernel of prior
. . . 2 0.4/ encodes that we
e Selection of fit properties is £ 4.2 expect close points to
automated and statistically 0o be strongly correlated...

=0.2 0.0 0.2 0.4 0.6 0.8 1.0

rigorous. independent variable, z [a.u.]

[1] C.E. Rasmussen and C.K.l. Williams. Gaussian Processes for Machine Learning.

MIT Press, 2006.
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GPR: a probabilistic method to fit profiles

Joint, Marginal and Conditional PDFs

06
~ lid: marginal ",
. , S e N
e Create multivariate normal prior =02 e R
distribution that sets smoothness, 00 T o
Symmetry etc. 5 posterior PDF
e Condition on observations to yield 1
the fit, including uncertainty - 0
estimate. .
e Distribution can include derivatives, —
K . —2} contours: joint prior PDF
line integrals, volume averages, etc.
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Y, 1,y
GP prior with samples GP conditioned on data
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gptools implements a very general form of GPR

A([]) =~(ls 69

5 05 0sllE #1 4))

_|

1
Ing=— g In2m — in ’TK(X,X)TT +ZM’

— (M = TH() T (TKEGX)TT + 40) 74 (M = Tu(X))

F(ML|M) = N (Tops(Xs) + T KXo, X)TT(TKX, X)TT + Zpp) "H(M = Tp(X)),
T K (X, Xa) T = T K (X, X)TT(TKX, X)TT + Zpp) THTK(X, X4)TT)

® Supports data of arbitrary dimension x € R".

® Supports explicit, parametric mean function u(x): can perform nonlinear
regression with GP fit to residuals.

® Supports arbitrary linear transformations T, T of inputs, outputs: can perform
tomographic inversions constrained with point measurements.

® Supports noise of arbitrary structure ¥, on observations.
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