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Increasing confidence in validation studies through
statistically rigorous inference of impurity transport
coefficient profiles

Motivation

• Validation of simulations requires rigorous inference of the
experimental quantities used for comparison.

• Current approaches to inferring impurity transport coefficients
suffer from issues with:

• Uniqueness of solution
• Complete accounting of uncertainty

Outline

• Measuring impurity transport coefficients on Alcator C-Mod.

• Current approaches and their shortcomings.

• Fully Bayesian inference of impurity transport coefficients
using MCMC.

• Preliminary results.
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Alcator C-Mod is uniquely equipped to make detailed
measurements of impurity transport
Multipulse laser blow-off impurity injector
provides controlled impurity injections [1]

• Multiple injections per shot: up to 10Hz

• Typically inject CaF2: calcium is
non-intrinsic and non-recycling

X-ray imaging crystal spectrometer [2] and
VUV spectrometers [3] track the impurities

• XICS observes spatial profile of a single
charge state (Ca18+): more direct
interpretation than unresolved soft x-rays

• Two single-chord VUV spectrometers
measure Ca16+, Ca17+

[1] Howard et al. (2011), RSI [2] Ince-Cushman et al. (2008), RSI
[3] Reinke et al. (2010), RSI

XICS and VUV sightlines
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Inferring impurity transport coefficients is a nonlinear
inverse problem

STRAHL

D(ρ)

V(ρ)

Ca source

ne(ρ, [t])

Te(ρ, [t])

nZ(ρ, t)

PEC view 
geometry

ε(chord, t)

XICS/VUV 
b(chord, t)

p(b | D, V) ≡ L(D, V)

blue: quantity to be inferred

forward model

red: experimental measurement

probability model

• Objective is to find D, V profiles that best reproduce the
observed brightnesses b on each of the diagnostics.

• Key issues are existence, uniqueness and stability of the
solution.

[1] Dux (2006), IPP Report 10/30
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Current approaches: maximum likelihood estimate (MLE)
MLE is a standard approach to
handle this problem. . .

D̂, V̂ = argmax
D,V

p(b|D,V )

• Pick D, V profiles which make
the observations most likely.

• Use standard optimization
techniques: assumption of
Gaussian noise makes this a
“least squares” problem.

• Need basis functions to
represent the profiles with a
finite number of variables:
typically piecewise linear
functions with fixed knots.

. . . but it has some potential
shortcomings

• Point estimate:

• Risk of underestimating
uncertainty.

• Not valid when there are
multiple extrema.

• Propagation of uncertainty in
ne , Te profiles requires an
additional step.
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Bayesian statistics provides a framework to overcome the
shortcomings of MLE

• Use Bayes’ rule to obtain the posterior distribution p(D,V |b),
including constraints/prior knowledge p(D,V ):

p(D,V |b) ∝ p(b|D,V )p(D,V )

• p(D,V |b) represents the state of knowledge about D, V after
having accounted for the data b.

• Working with p(D,V |b) avoids the issues of MLE.
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Markov chain Monte Carlo (MCMC) sampling enables a
complete accounting of uncertainty

• MCMC draws samples from
unnormalized probability
distribution such as
D(i),V (i) ∼ p(D,V |b) ∝
p(b|D,V )p(D,V ).

• Histogram to view p(D,V |b)
directly: nonuniqueness can be
identified immediately.

• Allows for better point
estimates, such as posterior
mean and variance:
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Chilenski et al. (2015), NFE[D|b] =
∫

Dp(D|b) dD ≈ 1

N

N∑
i=1

D(i)

var[D|b] =
∫

(D − E[D|b])2p(D|b) dD ≈ 1

N − 1

N∑
i=1

(D(i) − E[D|b])2
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Multimodal posterior necessitates advanced MCMC

• Affine-invariant ensemble sampler (ES)
[1, 2]

• Eliminates need to tune proposal
distribution.

• But, cannot efficiently sample
distributions with well-separated
modes.

• Parallel tempering (PT) [3]

• Sample from
p(b|D,V )1/Tp(D,V ) for
multiple values of 1 ≤ T ≤ ∞.

• Exchange of information between
adjacent T lets chains move
between modes.

• Adaptive parallel tempering (APT) [4]

• Automatically tune T ladder.

some chains 
get stuck in 
another mode

but parallel tempering 
allows them to escape

• APT with ES in each
temperature.

• 200 walkers per temperature, 25
temperatures.

• Plot shows − ln p(D,V |b) on a
log scale: lower value = better fit.

[1] Goodman and Weare (2010), CAMCS [2] Foreman-Mackey et al. (2013), PASP
[3] Earl and Deem (2010), PCCP [4] Vousden et al. (2015), arXiv:1501.05823 8/12



PRELIMINARY results do not match previous analysis

q=
1

“boundary condition”
    region

Previous analysis:

• Piecewise linear basis functions.

• MLE without estimate of width
of posterior distribution.

• Behavior in r/a > 0.6 thought
to be only weakly constrained.

• But, uncertainty there too
small to be consistent with
this.

New analysis:

• Cubic B-spline basis functions.

• APT to handle multiple maxima, width of posterior distribution.

• Uncertainty estimate in r/a > 0.6 still too small to be consistent
with assumed lack of knowledge there.

• Cases shown are likely overconstrained.

• Models with more free parameters are running now, but have not
found any reasonable maxima yet. 9/12



Predicted brightnesses are similar between all three cases
XICS core XICS outer VUV

• Agreement on core XICS chords is good in all cases.

• Agreement on outer XICS chords shows widest variation – 4
coefficient case seems to do best job.

• Agreement on VUV spectrometer is reasonable in all cases.

• This shows the importance of accounting for the possibility of
multiple solutions.
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Next step: include uncertainty in ne , Te profiles
Form joint posterior distribution, now also conditional on the
profile measurements d :

p(D,V , ne ,Te |b, d) = p(D,V |ne ,Te , b, d)p(ne ,Te |b, d)

Use Gaussian processes for ne ,Te [1]:

p(ne |d) = N (m(ρ), k(ρ, ρ))

Reduce dimension of parameter space by approximating this with
truncated eigendecomposition:

ne = QΛ1/2u +m(ρ), u ∼ N (0, I ), k(ρ, ρ) = QΛQ−1

Find marginal posterior distribution for D, V using MCMC:

p(D,V |b, d) =
∫

p(D,V , ne ,Te |b, d) dne dTe

[1] Chilenski et al. (2015), NF
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Application of Bayesian inference allows rigorous
estimation of impurity transport coefficient profiles,
better confidence in validation studies

• The combination of XICS and LBO enables detailed studies of
impurity transport on Alcator C-Mod.

• Inferring impurity transport coefficient profiles using point
estimates such as maximum likelihood suffers from issues
with:

• Uniqueness of solution
• Complete accounting of uncertainty

• New approach under development: use MCMC to find “all”
physically reasonable solutions to yield a complete accounting
of uncertainty.
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Backup slides
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Model selection with information criteria [1]

• Formalize the tradeoff between goodness of fit and complexity
of model: picking the model which minimizes an information
criterion is a way to avoid overfitting.

• Common choice: Deviance information criterion (DIC)

DIC = −2 ln p(b|E[D|b],E[V |b]) + 2peff

• Effective number of parameters peff has two definitions:

peff ,1 = 2 [ln p(b|E[D|b],E[V |b])− E[ln p(b|D,V )]]

peff ,2 = 2 var[ln p(b|D,V )]

• peff ,1 = peff ,2 = true # of parameters for linear models with
flat priors.

• Easy to compute from MCMC output.

[1] Gelman et al. (2014), BDA3
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B-spline basis functions are used to obtain a smooth
profile, impose constraints
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• dD/dr = 0 at r/a = 0

• D ≥ 0 everywhere

• V (0) = 0
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Goodness of fit is comparable between all three solutions

XICS core XICS outer VUV

case − ln p(b|D,V ) ∼ χ2

previous analysis/MLE 3.80× 104

3 coefficients, no free knots 2.15× 104

4 coefficients, 1 free knot 1.81× 104
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Temperature ladder adaptation for 3 coefficient case
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Temperature ladder adaptation for 4 coefficient case
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Posterior distribution for 3 coefficient case
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Posterior distribution for 4 coefficient case
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Profile fitting with Gaussian process regression (GPR)

• Established statistical/machine
learning technique [1].

• Expresses profile in terms of
(spatial) covariance of
multivariate normal (MVN)
distribution.

• Selection of fit properties is
automated and statistically
rigorous.

covariance
kernel of prior
encodes that we 
expect close points to 
be strongly correlated...

...and distant 
points to be 
weakly correlated

[1] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning.

MIT Press, 2006.
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GPR: a probabilistic method to fit profiles

• Create multivariate normal prior
distribution that sets smoothness,
symmetry, etc.

• Condition on observations to yield
the fit, including uncertainty
estimate.

• Distribution can include derivatives,
line integrals, volume averages, etc.

contours: joint prior PDF

solid: marginal
prior PDF

dashed: conditional
posterior PDF
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gptools implements a very general form of GPR

f

([
M∗
M

])
= N

([
T∗ 0
0 T

] [
µ(X∗)
µ(X)

]
,[

T∗ 0
0 T

] [
K(X∗,X∗) K(X,X∗)
K(X∗,X) K(X,X)

] [
TT
∗ 0
0 TT

]
+

[
0 0
0 ΣM

])

lnL =−
n

2
ln 2π −

1

2
ln
∣∣∣TK(X,X)TT +ΣM

∣∣∣
−

1

2
(M − Tµ(X))T (TK(X,X)TT +ΣM)−1(M − Tµ(X))

f (M∗|M) = N
(
T∗µ(X∗) + T∗K(X∗,X)T

T (TK(X,X)TT +ΣM)−1(M − Tµ(X)),

T∗K(X∗,X∗)T
T
∗ − T∗K(X∗,X)T

T (TK(X,X)TT +ΣM)−1TK(X,X∗)T
T
∗
)

• Supports data of arbitrary dimension x ∈ Rn.
• Supports explicit, parametric mean function µ(x): can perform nonlinear

regression with GP fit to residuals.
• Supports arbitrary linear transformations T, T∗ of inputs, outputs: can perform

tomographic inversions constrained with point measurements.
• Supports noise of arbitrary structure ΣM on observations.
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