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Outline: better profiles → better UQ → better physics

• Many experimental quantities are not measured directly,
instead are computed with complex codes.

• Need profile fits, need to propagate uncertainties efficiently.

• Existing techniques have substantial shortcomings.

• New technique has been developed, applied to several cases:
• Uncertainty quantification (UQ) of gradient scale lengths
• UQ of L-mode impurity transport coefficients
• Exploration of the connection of second derivatives with

momentum transport/intrinsic rotation

Better profile fitting leads to better uncertainty quantification
(UQ) of experimental quantities, more trust in results.
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Profile fitting is fundamental to plasma data analysis. . .

. . . but traditional spline methods have major shortcomings

• Analytical forms for uncertainty are cumbersome to compute,
often an additional Monte Carlo step must be performed.

• Selection of properties nontrivial, often ends up being manual.

• Use of a point estimate for properties can end up hiding
substantial uncertainty, particularly in the gradient.

• Has issues fitting whole profile without incorporating explicit
functional form (mtanh, etc.).
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Gaussian process regression (GPR) overcomes the
shortcomings of splines

• Established statistical/machine
learning technique [1].

• Expresses profile in terms of
(spatial) covariance of
multivariate normal (MVN)
distribution.

• Selection of fit properties is
automated and statistically
rigorous.

covariance
kernel of prior
encodes that we 
expect close points to 
be strongly correlated...

...and distant 
points to be 
weakly correlated

[1] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning.

MIT Press, 2006.
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GPR: a probabilistic method to fit profiles

• Create multivariate normal prior
distribution that sets smoothness,
symmetry, etc.

• Condition on observations to yield
the fit, including uncertainty
estimate.

• Distribution can include derivatives,
line integrals, volume averages, etc.

contours: joint prior PDF

solid: marginal
prior PDF

dashed: conditional
posterior PDF
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Application of GPR to C-Mod data delivers improved
estimates of profile gradients, uncertainties [1]

[1] M.A. Chilenski et al. (2014), submitted to Nucl. Fusion.

Preprint: PSFC report PSFC/JA-14-22.
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GPR+Monte Carlo sampling has been applied to obtain
uncertainties in experimental impurity transport coefficients

ne

Te

nZ Analysis Code

STRAHL

MPFIT

DZ

VZ

• Used 80 samples from GPR fits
for Te, ne.

• D agrees with previous result
obtained using splines.

• V differs, likely due to the 12%
discrepancy in the Te fits.

Previous work: N.T. Howard et al. (2012),

Nucl. Fusion 52, 063002
shaded region: ±1σ
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Open question: intrinsic rotation

A.E. White et al. (2013), Phys. Plasmas 20,

056106

• No external momentum input.

• Slight increase in density.

• Negligible change in
gradients/turbulence drive.

• Dramatic change in rotation
profile: peaked to hollow.
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GPR enables computation of second derivatives:
More detailed physics is necessary to explain change in rotation

dark shading: ±1σ
light shading: ±3σ

• Some speculation that second derivatives influence
momentum transport [1].

• But, very little difference is observed between second
derivative, normalized second derivative in these discharges.

More physics necessary to explain dramatic change in rotation.

[1] M. Barnes et al. (2013), PRL 111, 055005 9/10



Advanced profile fitting enables better code validation,
exploration of new physics

• Advanced profile fitting techniques improve the credibility and
efficiency of uncertainty propagation through analysis codes.

• GPR has been used to fit plasma profiles and propagate
uncertainties through a calculation of transport coefficients.

• GPR has been used to compute first and second derivatives
and their uncertainties.

• Open-source software is available:
github.com/markchil/gptools

• Paper has been submitted to Nuclear Fusion. Preprint: PSFC
report PSFC/JA-14-22.

Better profile fitting leads to better UQ of experimental
quantities, more trust in results.
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Backup slides

1 Gaussian processes

2 gptools
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The hyperparameters can be estimated by maximizing
the likelihood

Likelihood of the training data given k with hyperparameters
θ = [σf , `, . . . ]:

ln p(y |X, θ) = −1

2
yT[K + Σn]

−1y − 1

2
ln |K + Σn| −

n

2
ln 2π

• Maximize with respect to hyperparameter vector θ.

• Local maxima: different possible interpretations of the data.
E.g., noisy and long-` versus precise and short-`

• Compare likelihoods to select the most appropriate kernel.
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Full treatment of hyperparameters uses MCMC integration
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Point estimate misses substantial uncertainty in gradient

Median relative uncertainties over 0 ≤ ψn ≤ 1
Quantity y y ′ a/Ly
ne , MAP 1.2% 6.0% 6.0%
ne , MCMC 1.4% 8.4% 8.3%

Te , MAP 1.3% 3.7% 4.0%
Te , MCMC 1.4% 5.4% 5.6%
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Bad versus good choices for the hyperparameters have a
large effect on the likelihood
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Getting gradients and their uncertainties is straightforward
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The derivative of a GP is a GP:

cov

(
yi ,

∂yj
∂xdj

)
=
∂k(x i , x j)

∂xdj

cov

(
∂yi
∂xdi

,
∂yj
∂xdj

)
=
∂2k(x i , x j)

∂xdi ∂xdj

• Derivative equality constraint:
just add a datapoint!

• Derivative predictions:
predictive distribution contains
the uncertainty.
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Capturing the pedestal requires a non-stationary kernel

Gibbs kernel: ` is an arbitrary function of x

kG(x , x ′) = σ2
f

(
2`(x)`(x ′)

`2(x) + `2(x ′)

)1/2

exp

(
− |x − x ′|2

`2(x) + `2(x ′)

)

• Length scale:

` =
`1 + `2

2

− `1 − `2
2

tanh
x − x0
`w

• Handled `1, `2, `w and x0 by
maximizing ln p and with
MCMC.
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gptools: An extensible, object-oriented Python package for
multivariate GPR including gradients

• Available GPR codes lack one or more critical features:
• Ability to both constrain and predict gradients.
• Straightforward way to draw random samples.

• gptools was written to meet these needs:
• Object-oriented structure.
• Interface for easy data fusion and application of constraints.
• SE, Gibbs, Matérn and RQ kernels with support for arbitrary

orders of differentiation.

• Available on GitHub: www.github.com/markchil/gptools
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gptools contains two classes for performing GPR

GaussianProcess

k : Kernel
nk : Kernel
X
n
y
err y

add data(X, y, err y, n)
optimize hyperparameters()
predict(X star)
draw sample(X star)

Kernel

num dim
params
fixed params
param bounds

call (Xi, Xj, ni, nj)
set hyperparams(new params)
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gptools: An extensible, object-oriented Python package for
multivariate GPR including gradients

1 import gptools

2

3 # Create kernel:

4 k = gptools.SquaredExponentialKernel (1)

5 # Create GP:

6 gp = gptools.GaussianProcess(k, X=R_mid , y=Te , err_y=err_Te)

7 # Impose zero slope constraint at magnetic axis:

8 gp.add_data(R_mag , 0, n=1)

9 # Optimize hyperparameters:

10 gp.optimize_hyperparameters ()

11

12 # Make a prediction of the value:

13 R_star = scipy.linspace(R_mag , R_mid.max(), 100)

14 Te_fit , Te_std = gp.predict(R_star)

15 # Make a prediction of the gradient:

16 gradTe_fit , gradTe_std = gp.predict(R_star , n=1)
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gptools implements a very general form of GPR

f

([
M∗
M

])
= N

([
T∗ 0
0 T

] [
µ(X∗)
µ(X)

]
,[

T∗ 0
0 T

] [
K(X∗,X∗) K(X,X∗)
K(X∗,X) K(X,X)

] [
TT
∗ 0
0 TT

]
+

[
0 0
0 ΣM

])

lnL =−
n

2
ln 2π −

1

2
ln
∣∣∣TK(X,X)TT +ΣM

∣∣∣
−

1

2
(M − Tµ(X))T (TK(X,X)TT +ΣM)−1(M − Tµ(X))

f (M∗|M) = N
(
T∗µ(X∗) + T∗K(X∗,X)T

T (TK(X,X)TT +ΣM)−1(M − Tµ(X)),

T∗K(X∗,X∗)T
T
∗ − T∗K(X∗,X)T

T (TK(X,X)TT +ΣM)−1TK(X,X∗)T
T
∗
)

• Supports data of arbitrary dimension x ∈ Rn.
• Supports explicit, parametric mean function µ(x): can perform nonlinear

regression with GP fit to residuals.
• Supports arbitrary linear transformations T, T∗ of inputs, outputs: can perform

tomographic inversions constrained with point measurements.
• Supports noise of arbitrary structure ΣM on observations.
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