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Outline: better profiles — better UQ — better physics

e Many experimental quantities are not measured directly,
instead are computed with complex codes.

e Need profile fits, need to propagate uncertainties efficiently.

e Existing techniques have substantial shortcomings.
e New technique has been developed, applied to several cases:
e Uncertainty quantification (UQ) of gradient scale lengths
e UQ of L-mode impurity transport coefficients
e Exploration of the connection of second derivatives with
momentum transport/intrinsic rotation

Better profile fitting leads to better uncertainty quantification
(UQ) of experimental quantities, more trust in results.
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Profile fitting is fundamental to plasma data analysis. . .

Raw data: many samples at discrete points in space Averaged and smoothed
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... but traditional spline methods have major shortcomings

e Analytical forms for uncertainty are cumbersome to compute,
often an additional Monte Carlo step must be performed.

e Selection of properties nontrivial, often ends up being manual.

e Use of a point estimate for properties can end up hiding
substantial uncertainty, particularly in the gradient.

e Has issues fitting whole profile without incorporating explicit

functional form (mtanh, etc.). 3/10



Gaussian process regression (GPR) overcomes the
shortcomings of splines

Random realizations of GP

e Established statistical/machine
learning technique [1].

...and distant
points to be
weakly correlated

e Expresses profile in terms of
(spatial) covariance of
multivariate normal (MVN)
distribution.
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e Selection of fit properties is
automated and statistically
rigorous.
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[1] C.E. Rasmussen and C.K.l. Williams. Gaussian Processes for Machine Learning.

MIT Press, 2006.
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GPR: a probabilistic method to fit profiles

Joint, Marginal and Conditional PDFs
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Application of GPR to C-Mod data delivers improved
estimates of profile gradients, uncertainties [1]
Complete T, profile: Gibbs covariance kernel
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[1] M.A. Chilenski et al. (2014), submitted to Nucl. Fusion.
Preprint: PSFC report PSFC/JA-14-22.
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GPR+Monte Carlo sampling has been applied to obtain
uncertainties in experimental impurity transport coefficients

Analysis Code

Comparison of STRAHL results
for different fitting schemes
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e Used 80 samples from GPR fits
for Te, ne.

e D agrees with previous result
obtained using splines.

o V differs, likely due to the 12%
discrepancy in the T, fits.

Previous work: N.T. Howard et al. (2012),
Nucl. Fusion 52, 063002
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Open question: intrinsic rotation
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e Dramatic change in rotation

A.E. White et al. (2013), Phys. Plasmas 20, profile: peaked to hollow.
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GPR enables computation of second derivatives:
More detailed physics is necessary to explain change in rotation
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e Some speculation that second derivatives influence
momentum transport [1].

e But, very little difference is observed between second
derivative, normalized second derivative in these discharges.

More physics necessary to explain dramatic change in rotation.

[1] M. Barnes et al. (2013), PRL 111, 055005 9/10



Advanced profile fitting enables better code validation,
exploration of new physics

e Advanced profile fitting techniques improve the credibility and
efficiency of uncertainty propagation through analysis codes.

e GPR has been used to fit plasma profiles and propagate
uncertainties through a calculation of transport coefficients.

e GPR has been used to compute first and second derivatives
and their uncertainties.

e Open-source software is available:
github.com/markchil /gptools

e Paper has been submitted to Nuclear Fusion. Preprint: PSFC
report PSFC/JA-14-22.

Better profile fitting leads to better UQ of experimental
quantities, more trust in results.
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github.com/markchil/gptools

Backup slides

@ Gaussian processes

@® gptools
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The hyperparameters can be estimated by maximizing
the likelihood

Likelihood of the training data given k with hyperparameters
0 =los, £, ...]:

1 1 n
Inp(y|X, ) = 7§yT[K+ oty — 5 In[K+%o| = 5 In2r

e Maximize with respect to hyperparameter vector 6.

e Local maxima: different possible interpretations of the data.
E.g., noisy and long-¢ versus precise and short-¢

e Compare likelihoods to select the most appropriate kernel.
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Full treatment of hyperparameters uses MCMC integration

T, hyperparameter marginals
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Point estimate misses substantial uncertainty in gradient

Median relative uncertainties over 0 < ¢, <1

Quantity y y' a/L,
ne, MAP 1.2% 6.0% 6.0%
ne, MCMC 1.4% 8.4% 8.3%
Te, MAP 1.3% 3.7% 4.0%
Te, MCMC  1.4% 5.4% 5.6%
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Bad versus good choices for the hyperparameters have a

large effect on the likelihood
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Gettlng gradients and their uncertainties is straightforward
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The derivative of a GP is a GP:
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e Derivative equality constraint:
just add a datapoint!

o Derivative predictions:
predictive distribution contains
the uncertainty.
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Capturing the pedestal requires a non-stationary kernel

Gibbs kernel: ¢ is an arbitrary function of x
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gptools: An extensible, object-oriented Python package for

multivariate GPR including gradients

e Available GPR codes lack one or more critical features:
e Ability to both constrain and predict gradients.
o Straightforward way to draw random samples.

e gptools was written to meet these needs:

e Object-oriented structure.

o Interface for easy data fusion and application of constraints.

o SE, Gibbs, Matérn and RQ kernels with support for arbitrary
orders of differentiation.

e Available on GitHub: www.github.com/markchil /gptools
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www.github.com/markchil/gptools

gptools contains two classes for performing GPR

GaussianProcess
k : Kernel Kernel
nk : Kernel
X num_dim
n params
y fixed_params
erry param_bounds
add_data(X, y, err_y, n) __call__(Xi, Xj, ni, nj)
optimize_hyperparameters() set_hyperparams(new_params)
predict(X_star)
draw_sample(X_star)
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gptools: An extensible, object-oriented Python package for
multivariate GPR including gradients

0N O WN R

import gptools

# Create kernel:
k = gptools.SquaredExponentialKernel (1)
# Create GP:

gp = gptools.GaussianProcess(k, X=R_mid, y=Te, err_y=err_Te)

# Impose zero slope constraint at magnetic axis:
gp.add_data(R_mag, 0, n=1)

# Optimize hyperparameters:
gp.optimize_hyperparameters ()

# Make a prediction of the value:

R_star = scipy.linspace(R_mag, R_mid.max(), 100)
Te_fit, Te_std = gp.predict(R_star)

# Make a prediction of the gradient:

gradTe_fit, gradTe_std = gp.predict(R_star, n=1)
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gptools implements a very general form of GPR
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® Supports data of arbitrary dimension x € R".

® Supports explicit, parametric mean function u(x): can perform nonlinear
regression with GP fit to residuals.

® Supports arbitrary linear transformations T, T of inputs, outputs: can perform
tomographic inversions constrained with point measurements.

® Supports noise of arbitrary structure ¥, on observations.
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