Improved profile fitting and uncertainty quantification: applications to impurity and momentum transport

M.A. Chilenski, M. Greenwald, Y. Marzouk, N.T. Howard, A.E. White, J.E. Rice and J.R. Walk

Acknowledgements: M. Barnes, I. Abel

MIT PSFC/Alcator C-Mod *MIT Aero/Astro, Uncertainty Quantification Group

September 10, 2014

Supported by USDoE award DE-FC02-99ER54512. Supported in part by a DOE SCGF fellowship, administered by ORISE-ORAU under contract DE-AC05-06OR23100.

Outline: better profiles \rightarrow better UQ \rightarrow better physics

- Many experimental quantities are not measured directly, instead are computed with complex codes.
- Need profile fits, need to propagate uncertainties efficiently.
- Existing techniques have substantial shortcomings.
- New technique has been developed, applied to several cases:
 - Uncertainty quantification (UQ) of gradient scale lengths
 - UQ of L-mode impurity transport coefficients
 - Exploration of the connection of second derivatives with **momentum transport/intrinsic rotation**

Better profile fitting leads to better uncertainty quantification (UQ) of experimental quantities, more trust in results.

Profile fitting is fundamental to plasma data analysis...

... but traditional spline methods have major shortcomings

- Analytical forms for uncertainty are cumbersome to compute, often an additional Monte Carlo step must be performed.
- Selection of properties nontrivial, often ends up being manual.
- Use of a point estimate for properties can end up hiding **substantial** uncertainty, particularly in the gradient.
- Has issues fitting *whole* profile without incorporating explicit functional form (mtanh, etc.).

Gaussian process regression (GPR) overcomes the shortcomings of splines

- Established statistical/machine learning technique [1].
- Expresses profile in terms of (spatial) covariance of multivariate normal (MVN) distribution.
- Selection of fit properties is automated and statistically rigorous.

 C.E. Rasmussen and C.K.I. Williams. *Gaussian Processes for Machine Learning*. MIT Press, 2006.

GPR: a probabilistic method to fit profiles

- Create multivariate normal prior distribution that sets smoothness, symmetry, etc.
- Condition on observations to yield the fit, including uncertainty estimate.
- Distribution can include derivatives. line integrals, volume averages, etc.

0.75

0.80

R[m]

 T_e [keV] 0

> -4 0.70

Application of GPR to C-Mod data delivers improved estimates of profile gradients, uncertainties [1]

Preprint: PSFC report PSFC/JA-14-22.

GPR+Monte Carlo sampling has been applied to obtain uncertainties in experimental impurity transport coefficients

- Used 80 samples from GPR fits for T_{e} , n_{e} .
- *D* agrees with previous result obtained using splines.
- *V* differs, likely due to the 12% discrepancy in the *T*_e fits.

Previous work: N.T. Howard et al. (2012), Nucl. Fusion **52**, 063002

Open question: intrinsic rotation

- No external momentum input.
- Slight increase in density.
- Negligible change in gradients/turbulence drive.
- Dramatic change in rotation profile: peaked to hollow.

GPR enables computation of second derivatives: More detailed physics is necessary to explain change in rotation

- Some speculation that second derivatives influence momentum transport [1].
- But, very little difference is observed between second derivative, normalized second derivative in these discharges.

More physics necessary to explain dramatic change in rotation.

Advanced profile fitting enables better code validation, exploration of new physics

- Advanced profile fitting techniques improve the **credibility** and **efficiency** of uncertainty propagation through analysis codes.
- GPR has been used to fit plasma profiles and propagate uncertainties through a calculation of transport coefficients.
- GPR has been used to compute first and second derivatives *and their uncertainties*.
- Open-source software is available: github.com/markchil/gptools
- Paper has been submitted to Nuclear Fusion. Preprint: PSFC report PSFC/JA-14-22.

Better profile fitting leads to better UQ of experimental quantities, more trust in results.

Backup slides

The hyperparameters can be estimated by maximizing the likelihood

Likelihood of the training data given k with hyperparameters $\theta = [\sigma_f, \ell, \ldots]$:

$$\ln p(\boldsymbol{y}|\mathsf{X}, \boldsymbol{\theta}) = -\frac{1}{2}\boldsymbol{y}^{\mathsf{T}}[\mathsf{K} + \boldsymbol{\Sigma}_{\mathsf{n}}]^{-1}\boldsymbol{y} - \frac{1}{2}\ln|\mathsf{K} + \boldsymbol{\Sigma}_{\mathsf{n}}| - \frac{n}{2}\ln 2\pi$$

- Maximize with respect to hyperparameter vector $\boldsymbol{\theta}$.
- Local maxima: different possible interpretations of the data. E.g., noisy and long- ℓ versus precise and short- ℓ
- Compare likelihoods to select the most appropriate kernel.

Full treatment of hyperparameters uses MCMC integration

Point estimate misses substantial uncertainty in gradient

Med	ian relative un	certaint	ies over	$0 \le \psi_n$	≤ 1
	Quantity	У	у′	a/L_y	
	n _e , MAP	1.2%	6.0%	6.0%	
	n _e , MCMC	1.4%	8.4%	8.3%	
	T _e , MAP	1.3%	3.7%	4.0%	
	T _e , MCMC	1.4%	5.4%	5.6%	

Bad versus good choices for the hyperparameters have a large effect on the likelihood

Getting gradients and their uncertainties is straightforward

The derivative of a GP is a GP:

$$\operatorname{cov}\left(y_{i}, \frac{\partial y_{j}}{\partial x_{dj}}\right) = \frac{\partial k(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})}{\partial x_{dj}}$$
$$\operatorname{cov}\left(\frac{\partial y_{i}}{\partial x_{di}}, \frac{\partial y_{j}}{\partial x_{dj}}\right) = \frac{\partial^{2} k(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})}{\partial x_{di} \partial x_{dj}}$$

- Derivative equality constraint: just add a datapoint!
- Derivative predictions: predictive distribution contains the uncertainty.

Capturing the pedestal requires a non-stationary kernel Gibbs kernel: ℓ is an arbitrary function of x

$$k_{\mathsf{G}}(\boldsymbol{x}, \, \boldsymbol{x}') = \sigma_{f}^{2} \left(\frac{2\ell(\boldsymbol{x})\ell(\boldsymbol{x}')}{\ell^{2}(\boldsymbol{x}) + \ell^{2}(\boldsymbol{x}')} \right)^{1/2} \exp\left(-\frac{|\boldsymbol{x} - \boldsymbol{x}'|^{2}}{\ell^{2}(\boldsymbol{x}) + \ell^{2}(\boldsymbol{x}')} \right)$$

Length scale:

$$\ell = \frac{\ell_1 + \ell_2}{2} - \frac{\ell_1 - \ell_2}{2} \tanh \frac{x - x_0}{\ell_w}$$

 Handled l₁, l₂, l_w and x₀ by maximizing ln p and with MCMC.

gptools: An extensible, object-oriented Python package for multivariate GPR including gradients

- Available GPR codes lack one or more critical features:
 - Ability to both constrain and predict gradients.
 - Straightforward way to draw random samples.
- gptools was written to meet these needs:
 - Object-oriented structure.
 - Interface for easy data fusion and application of constraints.
 - SE, Gibbs, Matérn and RQ kernels with support for arbitrary orders of differentiation.
- Available on GitHub: www.github.com/markchil/gptools

gptools contains two classes for performing GPR

-				
GaussianProcess				
	k : Kernel nk : Kernel X n y err_y			
	add_data(X, y, err_y, n) optimize_hyperparameters() predict(X_star) draw_sample(X_star)			

gptools: An extensible, object-oriented Python package for multivariate GPR including gradients

```
1 import gptools
2
3 # Create kernel:
4 k = gptools.SquaredExponentialKernel(1)
5 # Create CP:
6 gp = gptools.GaussianProcess(k, X=R_mid, y=Te, err_y=err_Te)
7 # Impose zero slope constraint at magnetic axis:
8 gp.add_data(R_mag, 0, n=1)
9 # Optimize hyperparameters:
10 gp.optimize_hyperparameters()
11
12 # Make a prediction of the value:
13 R_star = scipy.linspace(R_mag, R_mid.max(), 100)
14 Te_fit, Te_std = gp.predict(R_star)
15 # Make a prediction of the gradient:
16 gradTe_fit, gradTe_std = gp.predict(R_star, n=1)
```

gptools implements a very general form of GPR

$$\begin{split} f\left(\begin{bmatrix}\boldsymbol{M}_{*}\\\boldsymbol{M}\end{bmatrix}\right) &= \mathcal{N}\left(\begin{bmatrix}\mathsf{T}_{*} & 0\\ 0 & \mathsf{T}\end{bmatrix}\begin{bmatrix}\boldsymbol{\mu}(\mathsf{X}_{*})\\\boldsymbol{\mu}(\mathsf{X})\end{bmatrix}, \\ \begin{bmatrix}\mathsf{T}_{*} & 0\\ 0 & \mathsf{T}\end{bmatrix}\begin{bmatrix}\mathsf{K}(\mathsf{X}_{*},\mathsf{X}_{*}) & \mathsf{K}(\mathsf{X},\mathsf{X}_{*})\\ \mathsf{K}(\mathsf{X}_{*},\mathsf{X}) & \mathsf{K}(\mathsf{X},\mathsf{X})\end{bmatrix}\begin{bmatrix}\mathsf{T}_{*}^{\mathsf{T}} & 0\\ 0 & \mathsf{T}^{\mathsf{T}}\end{bmatrix} + \begin{bmatrix}0 & 0\\ 0 & \boldsymbol{\Sigma}_{\mathsf{M}}\end{bmatrix}\right) \\ &\ln\mathcal{L} &= -\frac{n}{2}\ln 2\pi - \frac{1}{2}\ln\left|\mathsf{T}\mathsf{K}(\mathsf{X},\mathsf{X})\mathsf{T}^{\mathsf{T}} + \boldsymbol{\Sigma}_{\mathsf{M}}\right| \\ &-\frac{1}{2}(\boldsymbol{M} - \mathsf{T}\boldsymbol{\mu}(\mathsf{X}))^{\mathsf{T}}(\mathsf{T}\mathsf{K}(\mathsf{X},\mathsf{X})\mathsf{T}^{\mathsf{T}} + \boldsymbol{\Sigma}_{\mathsf{M}})^{-1}(\boldsymbol{M} - \mathsf{T}\boldsymbol{\mu}(\mathsf{X})) \end{split}$$

$$\begin{split} f(\boldsymbol{M}_*|\boldsymbol{M}) &= \mathcal{N}\big(\mathsf{T}_*\boldsymbol{\mu}(\mathsf{X}_*) + \mathsf{T}_*\mathsf{K}(\mathsf{X}_*,\mathsf{X})\mathsf{T}^{\mathsf{T}}(\mathsf{T}\mathsf{K}(\mathsf{X},\mathsf{X})\mathsf{T}^{\mathsf{T}} + \boldsymbol{\Sigma}_M)^{-1}(\boldsymbol{M} - \mathsf{T}\boldsymbol{\mu}(\mathsf{X})), \\ & \mathsf{T}_*\mathsf{K}(\mathsf{X}_*,\mathsf{X}_*)\mathsf{T}_*^{\mathsf{T}} - \mathsf{T}_*\mathsf{K}(\mathsf{X}_*,\mathsf{X})\mathsf{T}^{\mathsf{T}}(\mathsf{T}\mathsf{K}(\mathsf{X},\mathsf{X})\mathsf{T}^{\mathsf{T}} + \boldsymbol{\Sigma}_M)^{-1}\mathsf{T}\mathsf{K}(\mathsf{X},\mathsf{X}_*)\mathsf{T}_*^{\mathsf{T}}\big) \end{split}$$

- Supports data of arbitrary dimension $x \in \mathbb{R}^n$.
- Supports explicit, parametric mean function μ(x): can perform nonlinear regression with GP fit to residuals.
- Supports arbitrary linear transformations T, T_{*} of inputs, outputs: can perform tomographic inversions constrained with point measurements.
- Supports noise of arbitrary structure Σ_M on observations.