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Measuring impurity transport and testing simulations:
making sure we know what we think we know

Impurity transport coefficients D, V are often used in validation metrics

∂nZ
∂t

= −∇ ⋅ ΓZ + QZ

Model impurity flux ΓZ with diffusion coefficient D, convective velocity V :

ΓZ = −D∇nZ + VnZ

D, V are often used to validate impurity transport simulations:
Important tomeasureD, V properly to have a strong test of the code.
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Measuring impurity transport and testing simulations:
making sure we know what we think we know

ΓZ = −D∇nZ + VnZ

Current approaches for measuring D, V have considerable shortcomings

• Error bars not consistent with intuition.
• Different starting points give different results:

• Multiple solutions?
• Broad region of acceptable solutions?

New approach fixes these issues

• Use advanced inference techniques to find D(r), V(r).
• Rigorous selection of level of complexity in D(r), V(r) is critical.
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Inferring impurity transport coefficients: a nonlinear inverse problem
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• Inject impurity with laser blow-off
• Can only observe s, want to know
D, V .

• Need to assume a parameterization
for D(r), V(r).

• Two steps:
1. Find D, V consistent with s for

given parameterization.
2. Find best parameterization.

• Do both steps simultaneously with
MultiNest [Feroz MNRAS 2008,
2009]: Bayesian inference algorithm.
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MultiNest successfully reconstructs simple D, V profiles (synthetic data)
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• Five local measurements, uniformly
spaced over 0 ≤ r/a ≤ 1

• Δt = 6ms, 5% noise
• Have also tested with 32 x-ray
spectrometer chords: can handle
tomographic inversion
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MultiNest successfully determines how many spline coefficients to use

0.0

0.5

1.0

1.5

2.0
D

[m
2 /
s]

D, V for various levels of complexity

0.0 0.2 0.4 0.6 0.8 1.0
r/a

−12
−10

−8
−6
−4
−2
0

V
[m

/s
]

• MultiNest estimates the evidence fs|c(s|c):
probability of observing the data given c.

• Ran with various numbers of free parameters:
correctly selected c = 1 case.

• Bayes factors: BF(c, 1) = fs|c(s|c)/fs|1(s|1)
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Testing with more complicated synthetic data
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• Need to test with data representative of reality.
• Used result from [Howard NF 2012,
Chilenski NF 2015] as true profile.

• Realistic diagnostic configuration:
• 32 x-ray spectrometer chords (Ca18+),
6ms time resolution, 5% noise

• 2 VUV spectrometer chords (Ca17+, Ca16+),
2ms time resolution, 5% noise
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More complicated synthetic data pose a challenge
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Model selection is expensive

• 7 coefficient case took 7000 CPU-hours
= 15 wall-clock days!

• Need to speed up model, deploy on
cluster to make this practical.

• (Recall: BF(c, 5) = fs|c(s|c)/fs|5(s|5))
8/10



Results only resemble true profile when a minimum level of complexity is
obtained…despite “good”match to data: “eyeballing”does not work!
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Getting D, V right requires careful statistical analysis

Conclusions
• Need to select right level of
complexity:

• Can appear to match data well while
not matching the real D and V at all.

• New approach rigorously selects the
most likely model.

• Can also estimate/verify diagnostic
requirements.

• Validation of impurity transport
simulations is still an open question,
but we have a path forward.

Future work

• Speed up, parallelize analysis.
• Improve handling of sawteeth.
• Develop more efficient ways of
selecting basis functions.

• Re-assess previous results from Alcator
C-Mod and other tokamaks.

Additional details are in my PhD thesis: markchil.github.io/pdfs/thesis.pdf
Open-source software: github.com/markchil/bayesimp
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Backup slides
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Inferring impurity transport coefficients: a nonlinear inverse problem

inject impurity → diffusion, convectionmove impurity → observe signals

Finding D, V with Bayesian inference

fD,V|s(D, V|s)⏟⏟⏟⏟⏟⏟⏟⏟⏟
posterior

distribution

=

likelihood:
from STRAHL + data

⏞⏞⏞⏞⏞⏞⏞⏞⏞fs|D,V (s|D, V)

prior
distribution

(D > 0, V(0) = 0, etc.)

⏞⏞⏞⏞⏞fD,V (D, V)
fs(s)⏟

evidence

• f : probability density function
• s: measured signals
• D, V : parameters describing
radial profiles of diffusion,
convection

Parameter estimation: Find D, V : characterize fD,V|s(D, V|s).
Model selection: Find best way of parameterizing D, V : maximize fs(s).

ℳ: functional form (model) used to parameterize D(r), V(r).

UseMultiNest [Feroz MNRAS 2008, 2009]: samples fD,V|s(D, V|s)
and estimates fs(s).
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Inferring impurity transport coefficients: a nonlinear inverse problem

inject impurity → diffusion, convectionmove impurity → observe signals

Finding D, V with Bayesian inference

fD,V|s,ℳ(D, V|s, ℳ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
posterior

distribution

=

likelihood:
from STRAHL + data

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞fs|D,V ,ℳ(s|D, V , ℳ)

prior
distribution

(D > 0, V(0) = 0, etc.)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞fD,V|ℳ(D, V|ℳ)
fs|ℳ(s|ℳ)⏟⏟⏟⏟⏟⏟⏟

evidence

• f : probability density function
• s: measured signals
• D, V : parameters describing
radial profiles of diffusion,
convection

Parameter estimation: Find D, V : characterize fD,V|s,ℳ(D, V|s, ℳ).
Model selection: Find best way of parameterizing D, V : maximize fs|ℳ(s|ℳ).

ℳ: functional form (model) used to parameterize D(r), V(r).

UseMultiNest [Feroz MNRAS 2008, 2009]: samples fD,V|s,ℳ(D, V|s, ℳ)
and estimates fs|ℳ(s|ℳ).
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Inferring impurity transport coefficients is a difficult inverse problem

Ca source

V(r, [t])

D(r, [t])

ne(r, [t])

Te(r, [t])

STRAHL n̂Z,i(r, t) ŝ = ∫ ̂ε(r, t) dl

PEC:
Pij(Te, ne)

view
geometry

fs|D,V (s|D, V)XICS/VUV:
s = ∫ ε(r, t) dl

forwardmodel

probability
model

spectroscopic
observations

13/10



Spectrometer chords on Alcator C-Mod
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Spectrometer lines of sight

HiReX-SR X-ray imaging crystal
spectrometer (XICS) with 32
chords split into 8 groups.
Views He-like Ca (0.32 nm) with
6ms time resolution.

XEUS Vacuum ultraviolet (VUV)
spectrometer with one chord.
Views Li-like Ca (1.9 nm) with
2ms time resolution.

LoWEUS Vacuum ultraviolet (VUV)
spectrometer with one chord.
Views Be-like Ca (19 nm) with
2ms time resolution.
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Model selection using the evidence (a.k.a. the marginal likelihood)

fD,V|s(D, V|s)⏟⏟⏟⏟⏟⏟⏟⏟⏟
posterior

=

likelihood

⏞⏞⏞⏞⏞⏞⏞⏞⏞fs|D,V (s|D, V)

prior

⏞⏞⏞⏞⏞fD,V (D, V)
fs(s)⏟

evidence

fs(s) = ∫ fs|D,V (s|D, V)fD,V (D, V) dD dV
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Tradeoff between goodness of fit,
complexity [Schwarz AS 1978]:

ln fs(s) ≈ ln fs| ̂θ(s| ̂θ)⏟⏟⏟⏟⏟
goodness-of-fit

− d
2
lnN

⏟
complexity

(d is number of parameters, N number of
datapoints)

• fs(s) is maximized by model with
“right” level of complexity.

• Simple models can only explain a few
data sets, low evidence for most s.

• Complex models can explain many
data sets, any given s has low
probability.
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Simple example: fitting noisy data from y = x3 + 2x2 − 5x + 1
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More complex models match the true profiles better

Mahalanobis distance: M = √(Ttrue − μ)TΣ−1(Ttrue − μ), T = [D, V]
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V /D is captured for r/a ≲ 0.7, c ≥ 5
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Results only resemble true profile when a minimum level of complexity is
obtained…despite “good”match to data: “eyeballing”does not work!
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MultiNest successfully reconstructs simple D, V profiles (synthetic data)
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• Five local measurements
• Δt = 6ms, 5% noise
• Have also tested with 32 XICS chords
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Rate coefficients have low sensitivity to ne, Te over their uncertainties
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GPR permits efficient propagation of uncertainty [Chilenski NF 2015]
Drawing samples of the profile y:

y ∼ 𝒩 (μ,Σ), Σ = QΛQ−1

̃y = QΛ1/2u + μ, u ∼ 𝒩 (0, I)
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