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Careful analysis is needed to properly measure impurity
transport coefficient profiles

• Validation of simulations requires rigorous inference of the
experimental quantities used for comparison.

• Measuring impurity transport coefficients is a very challenging
nonlinear inverse problem.

• In particular, it is not sufficient to compute merely one
reasonable value for the transport coefficients – there can be
multiple, dramatically different solutions that describe the
data equally well.

• This lack of uniqueness in the solution must be taken into
account when computing the uncertainty in the solution and
comparing to simulations.
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Alcator C-Mod is uniquely equipped to make detailed
measurements of impurity transport

Multipulse laser blow-off impurity injector
provides controlled impurity injections [1]

• Multiple injections per shot: up to 10Hz

• Typically inject CaF2: calcium is
non-intrinsic and non-recycling

X-ray imaging crystal spectrometer [2] and
VUV spectrometers [3] track the impurities

• XICS observes spatial profile of a single
charge state (Ca18+): more direct
interpretation than unresolved soft x-rays

• Two single-chord VUV spectrometers
measure Ca16+, Ca17+

XICS and VUV sightlines
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Inferring impurity transport coefficients is a nonlinear
inverse problem

STRAHL

D(ρ)

V(ρ)

Ca source

ne(ρ, [t])

Te(ρ, [t])

nZ(ρ, t)

PEC view 
geometry

ε(chord, t)

XICS/VUV 
b(chord, t)

p(b | D, V) ≡ L(D, V)

blue: quantity to be inferred

forward model

red: experimental measurement

probability model

• This is an inverse problem: given the forward model
b = F (D,V ), the objective is to find D, V profiles that
best reproduce the observed brightness b on each of the
diagnostics.

• Key issues are existence, uniqueness and stability of the
solution.
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The forward model is built around the STRAHL code

• Assume impurity flux of the form ΓZ = −D∇nZ + Vnz .

• STRAHL [4] computes the temporal evolution of the impurity
charge state densities nZ ,j(ρ, t) for given profiles of D, V .

• Photon emission coefficients from ADAS [5] are used to
convert nZ ,j(ρ, t) to spectral line emissivity profiles.

• TRIPPy tomography code [6] is used to perform line
integrations to obtain b(chord, t).

• Uncertainty in data is taken to be Gaussian:

p(bobs|D,V , ne ,Te) =∏
i
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B-spline basis functions are used to obtain a smooth
profile, impose constraints
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• dD/dr = 0 at r/a = 0

• D ≥ 0 everywhere

• V (0) = 0
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There are several challenges when solving this inverse
problem

• The forward model is somewhat expensive to evaluate: ∼ 1 s
per run on a typical workstation.

• This reduces the practicality of sampling-based inference
techniques, which may require ∼ 107 samples to find the
mode(s) of the posterior distribution and fully characterize the
parameter space.

• The nonlinear relationship between the inputs D, V and the
outputs b(chord, t) introduces the possibility that there are
multiple profiles of D, V which describe the data equally well.

• In statistical terms, this means that the posterior distribution
may be multimodal.

• Failure to account for multiple modes can lead to a
dramatic underestimation of the uncertainty in D, V .
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Current approaches: maximum likelihood estimate (MLE)
MLE is a standard approach to
handle this problem. . .

D̂, V̂ = argmax
D,V

p(b|D,V )

• Pick D, V profiles which make
the observations most likely.

• Use standard optimization
techniques: assumption of
Gaussian noise makes this a
“least squares” problem.

• Need basis functions to
represent the profiles with a
finite number of variables:
typically piecewise linear
functions with fixed knots.

. . . but it has some potential
shortcomings

• Point estimate:

• Risk of underestimating
uncertainty.

• Not valid when there are
multiple extrema.

• Propagation of uncertainty in
ne , Te profiles requires an
additional step.
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Bayesian statistics provide a framework to overcome the
shortcomings of MLE

Use Bayes’ rule to obtain the posterior distribution p(D,V |b),
including constraints/prior knowledge p(D,V ):

f (D,V |b)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
f (b|D,V )

prior︷ ︸︸ ︷
f (D,V )

f (b)︸︷︷︸
evidence

• Likelihood: Probability of observing the data b given D, V ,
assumed to be Gaussian.

• Prior: Distribution encoding any prior assumptions about D,
V (positivity, typical values, etc.)

• Evidence: Probability of the data under the model. Just a
normalization constant for parameter estimation.

• Posterior: Probability distribution for D, V given the data b:
contains all information which is known about D, V .
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Markov chain Monte Carlo (MCMC) sampling enables a
complete accounting of uncertainty

• MCMC draws samples from
unnormalized probability
distribution such as
D(i),V (i) ∼ p(D,V |b) ∝
p(b|D,V )p(D,V ).

• Histogram to view p(D,V |b)
directly: nonuniqueness can be
identified immediately.

• Allows for better point
estimates, such as posterior
mean and variance:

0.6

1.2

1.8

2.4

l 1

1.5

3.0

4.5

l 2

0.00

0.02

0.04

0.06

0.08

0.10

l w

6 12 18 24

σf

0.90

0.96

1.02

1.08

x
0

0.6 1.2 1.8 2.4

l1

1.5 3.0 4.5

l2

0.000.020.040.060.080.10

lw

0.90 0.96 1.02 1.08

x0

Te  hyperparameter marginals

Figure from [7]E[D|b] =
∫
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Multimodal posterior necessitates advanced MCMC

• Affine-invariant ensemble sampler (ES)
[8, 9]

• Eliminates need to tune proposal
distribution.

• But, cannot efficiently sample
distributions with well-separated
modes.

• Parallel tempering (PT) [10]

• Sample from
p(b|D,V )1/Tp(D,V ) for
multiple values of 1 ≤ T ≤ ∞.

• Exchange of information between
adjacent T lets chains move
between modes.

• Adaptive parallel tempering (APT)
[11]

• Automatically tune T ladder.

some chains 
get stuck in 
another mode

but parallel tempering 
allows them to escape

• APT with ES in each
temperature.

• 200 walkers per temperature, 25
temperatures.

• Plot shows − ln p(D,V |b) on a
log scale: lower value = better fit.
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Preliminary results do not match previous analysis

q=
1

“boundary condition”
    region

Previous analysis [12]:

• Piecewise linear basis functions.

• MLE without estimate of width
of posterior distribution.

• Behavior in r/a > 0.6 thought
to be only weakly constrained.

• But, uncertainty there too
small to be consistent with
this.

New analysis:

• Cubic B-spline basis functions.

• APT to handle multiple maxima, width of posterior distribution.

• Uncertainty estimate in r/a > 0.6 still too small to be consistent
with assumed lack of knowledge there.

• Cases shown are likely overconstrained.

• Models with more free parameters failed to burn in, even after many
thousands of CPU-hours. 11/26



Predicted brightnesses are similar between all three cases
XICS core XICS outer VUV

• Agreement on core XICS chords is good in all cases.

• Agreement on outer XICS chords shows widest variation – 4
coefficient case seems to do best job.

• Agreement on VUV spectrometer is reasonable in all cases.

• This shows the importance of accounting for the possibility of
multiple solutions.
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Temperature ladder adaptation for 3 coefficient case

Appears to have settled down after about 5000 steps.
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Temperature ladder adaptation for 4 coefficient case

Has not settled down even after 6000 steps.
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Posterior distribution for 3 coefficient case

Appears to be unimodal and is fully burned-in.

15/26



Posterior distribution for 4 coefficient case

Appears to be unimodal but has not burned in even after 6000
steps.
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Convergence of MCMC/APT depends strongly on quality
of starting conditions

• 4 coefficient case above used 3× 107 calls to STRAHL –
about 9000 CPU-hours.

• More flexible basis functions take even longer to burn in.

• Ideally, the sampler will be initialized with most walkers
already near the posterior modes.

• This necessitates the use of global optimization techniques to
find “all” of the posterior modes:

• PaGMO/PyGMO [13] enables parallelization of genetic
algorithms-based global optimizers through use of the
Generalized Island Model [14].

• Also includes tools for efficiently searching a parameter space
for local extrema.
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The Sobol sequence provides a systematic, efficient way of
exploring the parameter space

Sobol sequence efficiently fills the parameter space, leaving fewer
holes than pseudorandom sampling, better statistical properties
than a uniform grid [15, 16].

Pseudorandom sequence: Sobol quasirandom sequence:

Images from [17, 18]
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Systematic exploration of the parameter space using local
optimizers is underway

• Sampled parameter space using 5× 105 point Sobol sequence
then started local optimizers at the 100 best points found.

• Discarded solutions which ended up too close to bounds.
• This left 6 possible solutions, best solution is shown in blue,
remainder are shaded according to χ2.
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A more brute-force approach was also attempted
• Launched local optimizers at ∼1000 points, again using a
Sobol sequence to efficiently sample the space.

• Repeatedly restarted optimizers from the previous solutions,
periodically pruning bad/stuck solutions.

• Ended up with 46 solutions.

Wide variation in pro�le shape outside 
of r/a > 0.6 is consistent with location 
where XICS signal drops o�.
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Despite dramatic differences in profile shape, the solutions
from the brute-force local extrema search all provide
reasonable fits to the brightness data

XICS core XICS outer VUV

• Fit to core XICS, VUV chords is good in all cases.

• Fit to outer XICS chords again shows widest variation.

• This indicates that the solution is not unique. Failing to
account for the multiple possible solutions leads to an
underestimation of the uncertainty in D, V .
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Choice of local optimizer has a critical effect on the quality
of the solution obtained

algorithm result

Nelder-Mead 17967
Subplex 19390
compass search 46328
COBYLA 60674
BOBYQA 84250

• Result shown is the negative
log-posterior (∝ χ2): lower is
better.

• Each algorithm started with the
same initial guess.

• Limited each algorithm to 1000
iterations.

• Repeated 10 times, since this
(surprisingly) seemed to deliver
better performance than just
running for 10000 iterations.

22/26



Next step: include uncertainty in ne , Te profiles
Form joint posterior distribution, now also conditional on the
profile measurements d :

p(D,V , ne ,Te |b, d) = p(D,V |ne ,Te , b, d)p(ne ,Te |b, d)

Use Gaussian processes for ne ,Te [7]:

p(ne |d) = N (m(ρ), k(ρ, ρ))

Reduce dimension of parameter space by approximating this with
truncated eigendecomposition:

ne = QΛ1/2u +m(ρ), u ∼ N (0, I ), k(ρ, ρ) = QΛQ−1

Find marginal posterior distribution for D, V using MCMC:

p(D,V |b, d) =
∫

p(D,V , ne ,Te |b, d) dne dTe
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Conclusions

• Rigorous quantification of the uncertainties in impurity
transport coefficients is essential for validation of multichannel
transport simulations.

• The computational expense, nonlinearity of the forward model
make the problem difficult to solve and susceptible to multiple
extrema.

• Work is underway to combine advanced optimization and
inference tools to overcome these issues.

Future Work

• Deployment of more advanced optimizers to more efficiently
identify local extrema.

• MCMC sampling using results from local extrema search.

• Incorporation of SXR data.

• Accounting for uncertainties in ne, Te data.
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