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Recent experiments have been performed to collect a data
set over wide range of collisionality, explore collisionality
dependence of H-mode impurity transport

Outline

• Electron density peaking in H-mode

• Initial look at global confinement trends

• Measuring impurity transport coefficients on C-Mod

• New analysis/uncertainty quantification techniques

• Initial look at core transport coefficient profiles
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H-mode electron density peaking scales with collisionality

Cross-machine scaling law [1, 2]

ne(0)/〈ne〉 scales with νeff = 0.1Zeff R
〈ne,19〉

〈Te,keV 〉2

This scaling enables interesting studies
of impurity transport

• Explore connection between electron and
impurity peaking.

• Actuate the neoclassical pinch and
turbulence drive (both ∝ ∇ne), explore
implications for high-Z accumulation [3].

[1] Angioni et al. (2007), POP [2] Greenwald et al. (2007), NF

[3] Reinke et al., JI1.00002 (tuesday PM)
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Initial look at global confinement

• All discharges are EDA H-modes: no ELMs, pedestal
regulated by quasi-coherent mode (QCM).

• Scanned Ip to vary 〈ne〉, scanned PICRF to vary 〈Te〉.
• Strong scaling with (∇ne)ped consistent with J. Rice,
PO3.00004 (earlier this session).

• Challenge: extract local core transport information from
plasma with global confinement dominated by pedestal.
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Alcator C-Mod is uniquely equipped to make detailed
measurements of impurity transport

• Multipulse laser blow-off impurity injector can inject Ca (or
other desired impurity) multiple times per shot [1].

• X-ray imaging crystal spectrometer [2] observes spatial profile
of a single charge state (Ca18+): more direct interpretation
than unresolved soft x-rays.

• Impurity transport coefficient profiles reconstructed [3] using
STRAHL impurity transport code [4].

• Result is strongly sensitive to background ne , Te profiles.
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[1] Howard et al. (2011), RSI [2] Ince-Cushman et al. (2008), RSI
[3] Howard et al. (2012), NF [4] Dux (2006), IPP rpt. 10/30
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New techniques for uncertainty propagation

• Profile fitting is fundamental to
transport analysis.

• Splines are bad at finding uncertainty
in gradient.

• New approach [1]: Gaussian process
regression (GPR) [2]

• Automatic, delivers reliable
uncertainty estimate for gradient.

• Based on spatial covariance of
data points, not an assumed
functional form.

• Output is probability distribution
(PDF), can be efficiently
propagated through subsequent
analysis.

[1] Chilenski et al. (2014), submitted to NF. Preprint: PSFC report
JA-14-22

[2] Rasmussen and Williams, Gaussian Processes for Machine
Learning, MIT Press, 2006

y : observation, y∗: prediction

f (y∗|y = 1)︸ ︷︷ ︸
conditional posterior
“PDF of y∗ given y”

=

joint prior︷ ︸︸ ︷
f (y∗, y = 1)

f (y = 1)︸ ︷︷ ︸
marginal prior

f (y)=
∫

f (y∗,y) dy∗

contours: joint prior PDF

solid: marginal
prior PDF

dashed: conditional
posterior PDF
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Example: Fitting an H-mode density profile

(dark band: ±1σ, light band: ±3σ)

Open source software available: github.com/markchil/gptools/
7/9
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Preliminary analysis yields H-mode core impurity transport
coefficient profiles

(light band: ±1σ)

• Reconstruction not reliable for
r/a > 0.6.

• High D inside inversion radius
could simply be result of
incomplete handling of sawteeth,
further analysis is necessary.

• Core impurity transport dominated
by anomalous diffusivity.
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Alcator C-Mod’s combination of powerful diagnostics,
novel analysis techniques and reactor-relevant conditions
enables detailed study of H-mode impurity transport

Summary

• Scaling of electron density peaking with νeff provides convenient
actuator for a/Lne : vary neoclassical pinch and turbulence drive.

• Have made detailed measurements of impurity transport in EDA
H-modes of varying νeff .

• Reconstruction of D, V profiles has begun.

• New data analysis techniques have been developed to fit profiles,
efficiently propagate uncertainty.

Future Work

• Analyze more shots with different collisionalities.

• Compare to gyrokinetic simulations.
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Backup slides

1 Gaussian processes

2 gptools

3 Bayesian inference
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The hyperparameters can be estimated by maximizing
the likelihood

Likelihood of the training data given k with hyperparameters
θ = [σf , `, . . . ]:

ln p(y |X, θ) = −1

2
yT[K + Σn]

−1y − 1

2
ln |K + Σn| −

n

2
ln 2π

• Maximize with respect to hyperparameter vector θ.

• Local maxima: different possible interpretations of the data.
E.g., noisy and long-` versus precise and short-`

• Compare likelihoods to select the most appropriate kernel.
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Full treatment of hyperparameters uses MCMC integration
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Point estimate misses substantial uncertainty in gradient

Median relative uncertainties over 0 ≤ ψn ≤ 1
Quantity y y ′ a/Ly
ne , MAP 1.2% 6.0% 6.0%
ne , MCMC 1.4% 8.4% 8.3%

Te , MAP 1.3% 3.7% 4.0%
Te , MCMC 1.4% 5.4% 5.6%
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Bad versus good choices for the hyperparameters have a
large effect on the likelihood
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Getting gradients and their uncertainties is straightforward

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

T
e 

[k
e
V

]
No slope constraint

30
25
20
15
10

5

d
T
e/
d
R

 [
ke

V
/m

]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

T
e 

[k
e
V

]

With slope constraint

0.70 0.75 0.80 0.85
R [m]

30
25
20
15
10

5
0

d
T
e/
d
R

 [
ke

V
/m

]

C
-M

o
d
 s

h
o
t 

1
1
2
0
8
0
8
0
2
4

The derivative of a GP is a GP:

cov

(
yi ,

∂yj
∂xdj

)
=
∂k(x i , x j)

∂xdj

cov

(
∂yi
∂xdi

,
∂yj
∂xdj

)
=
∂2k(x i , x j)

∂xdi ∂xdj

• Derivative equality constraint:
just add a datapoint!

• Derivative predictions:
predictive distribution contains
the uncertainty.
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Capturing the pedestal requires a non-stationary kernel

Gibbs kernel: ` is an arbitrary function of x

kG(x , x ′) = σ2
f

(
2`(x)`(x ′)

`2(x) + `2(x ′)

)1/2

exp

(
− |x − x ′|2

`2(x) + `2(x ′)

)

• Length scale:

` =
`1 + `2

2
− `1 − `2

2
tanh

x − x0
`w

• Handled `1, `2, `w and x0 by
maximizing ln p (MAP) and by
marginalizing with MCMC.
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Gibbs kernel with tanh length scale has been extensively
tested with noisy synthetic data
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Error estimates from Gibbs kernel with tanh length scale
have been shown to be asymptotically consistent using
noisy synthetic data

(a)

(b)
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gptools: An extensible, object-oriented Python package for
multivariate GPR including gradients

• Available GPR codes lack one or more critical features:
• Ability to both constrain and predict gradients.
• Straightforward way to draw random samples.

• gptools was written to meet these needs:
• Object-oriented structure.
• Interface for easy data fusion and application of constraints.
• SE, Gibbs, Matérn and RQ kernels with support for arbitrary

orders of differentiation.

• Available on GitHub: www.github.com/markchil/gptools

19/9

www.github.com/markchil/gptools


gptools contains two classes for performing GPR

GaussianProcess

k : Kernel
nk : Kernel
X
n
y
err y

add data(X, y, err y, n)
optimize hyperparameters()
predict(X star)
draw sample(X star)

Kernel

num dim
params
fixed params
param bounds

call (Xi, Xj, ni, nj)
set hyperparams(new params)
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gptools: An extensible, object-oriented Python package for
multivariate GPR including gradients

1 import gptools

2

3 # Create kernel:

4 k = gptools.SquaredExponentialKernel (1)

5 # Create GP:

6 gp = gptools.GaussianProcess(k, X=R_mid , y=Te , err_y=err_Te)

7 # Impose zero slope constraint at magnetic axis:

8 gp.add_data(R_mag , 0, n=1)

9 # Optimize hyperparameters:

10 gp.optimize_hyperparameters ()

11

12 # Make a prediction of the value:

13 R_star = scipy.linspace(R_mag , R_mid.max(), 100)

14 Te_fit , Te_std = gp.predict(R_star)

15 # Make a prediction of the gradient:

16 gradTe_fit , gradTe_std = gp.predict(R_star , n=1)
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gptools implements a very general form of GPR

f

([
M∗
M

])
= N

([
T∗ 0
0 T

] [
µ(X∗)
µ(X)

]
,[

T∗ 0
0 T

] [
K(X∗,X∗) K(X,X∗)
K(X∗,X) K(X,X)

] [
TT
∗ 0
0 TT

]
+

[
0 0
0 ΣM

])

lnL =−
n

2
ln 2π −

1

2
ln
∣∣∣TK(X,X)TT +ΣM

∣∣∣
−

1

2
(M − Tµ(X))T (TK(X,X)TT +ΣM)−1(M − Tµ(X))

f (M∗|M) = N
(
T∗µ(X∗) + T∗K(X∗,X)T

T (TK(X,X)TT +ΣM)−1(M − Tµ(X)),

T∗K(X∗,X∗)T
T
∗ − T∗K(X∗,X)T

T (TK(X,X)TT +ΣM)−1TK(X,X∗)T
T
∗
)

• Supports data of arbitrary dimension x ∈ Rn.
• Supports explicit, parametric mean function µ(x): can perform nonlinear

regression with GP fit to residuals.
• Supports arbitrary linear transformations T, T∗ of inputs, outputs: can perform

tomographic inversions constrained with point measurements.
• Supports noise of arbitrary structure ΣM on observations.
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GPR: a probabilistic method to fit profiles

f (y∗|y = 1)︸ ︷︷ ︸
conditional posterior
“PDF of y∗ given y”

=

joint prior︷ ︸︸ ︷
f (y∗, y = 1)

f (y = 1)︸ ︷︷ ︸
marginal prior

f (y)=
∫
f (y∗,y) dy∗

• Create multivariate normal prior
distribution that sets smoothness,
symmetry, etc.

• Condition on observations to yield
the fit, including uncertainty
estimate.

• Distribution can include derivatives,
line integrals, volume averages, etc.

y : observation, y∗: prediction

contours: joint prior PDF

solid: marginal
prior PDF

dashed: conditional
posterior PDF

(PDF = “probability density function”)
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The properties of the fit are inferred using Bayes’ rule
Given spatial covariance characterized by hyperparameter vector θ
and observations y , Bayes’ rule is:

f (θ|y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
f (y |θ)

prior︷︸︸︷
f (θ)

f (y)︸︷︷︸
evidence

• Likelihood: Probability of observing the data y given the
hyperparameters θ. Simply a multivariate normal for GPR.

• Prior: Distribution encoding any prior assumptions about the
hyperparameters θ (positivity, typical values, etc.)

• Evidence: Probability of the data under the model. Just a
normalization constant for parameter estimation.

• Posterior: Probability distribution for the hyperparameters θ
given the data y : the end-goal of the inference.
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Three levels of sophistication to select hyperparameters θ

f (θ|y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
f (y |θ)

prior︷︸︸︷
f (θ)

f (y)︸︷︷︸
evidence

so-so: Maximum likelihood (ML): Pick the hyperparameters θ
that maximize the likelihood f (y |θ) of the data.

better: Maximum a posteriori (MAP, “empirical Bayes”): Pick
the hyperparameters θ that have the highest posterior
probability f (θ|y).

best: Marginalization (“full Bayes”): Average over the possible
hyperparameters when making a prediction y∗:

f (y∗|y) =
∫

f (y∗|y ,θ)f (θ|y) dθ
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