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Recent experiments have been performed to collect a data
set over wide range of collisionality, explore collisionality
dependence of H-mode impurity transport

QOutline

Electron density peaking in H-mode

Initial look at global confinement trends

e Measuring impurity transport coefficients on C-Mod

New analysis/uncertainty quantification techniques

Initial look at core transport coefficient profiles
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H-mode electron density peaking scales with collisionality
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Initial look at global confinement
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All discharges are EDA H-modes: no ELMs, pedestal
regulated by quasi-coherent mode (QCM).

Scanned I, to vary (ne), scanned Picrr to vary (Te).
Strong scaling with (Vne)ped consistent with J. Rice,
P03.00004 (earlier this session).

Challenge: extract local core transport information from
plasma with global confinement dominated by pedestal.

4/9



Alcator C-Mod is uniquely equipped to make detailed
measurements of impurity transport

e Multipulse laser blow-off impurity injector can inject Ca (or
other desired impurity) multiple times per shot [1].

e X-ray imaging crystal spectrometer [2] observes spatial profile
of a single charge state (Ca'®*): more direct interpretation
than unresolved soft x-rays.

e Impurity transport coefficient profiles reconstructed [3] using
STRAHL impurity transport code [4].

e Result is strongly sensitive to background n., T, profiles.
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New techniques for uncertainty propagation

y: observation, y.: prediction
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Example: Fitting an H-mode density profile

H-mode n, profile fit with GPR
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Open source software available: github.com/markchil/gptools/
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github.com/markchil/gptools/

Preliminary analysis yields H-mode core impurity transport

coefficient profiles
PRELIMINARY STRAHL Results
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e Reconstruction not reliable for
r/a>0.6.

e High D inside inversion radius
could simply be result of
incomplete handling of sawteeth,
further analysis is necessary.

(b) VIm/s]

e Core impurity transport dominated
by anomalous diffusivity.
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Alcator C-Mod’s combination of powerful diagnostics,
novel analysis techniques and reactor-relevant conditions
enables detailed study of H-mode impurity transport
Summary
e Scaling of electron density peaking with ves provides convenient
actuator for a/L,,: vary neoclassical pinch and turbulence drive.

e Have made detailed measurements of impurity transport in EDA
H-modes of varying ves.

e Reconstruction of D, V profiles has begun.

e New data analysis techniques have been developed to fit profiles,
efficiently propagate uncertainty.

Future Work

e Analyze more shots with different collisionalities.

e Compare to gyrokinetic simulations.
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Backup slides

@ Gaussian processes

@® gptools

© Bayesian inference
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The hyperparameters can be estimated by maximizing
the likelihood

Likelihood of the training data given k with hyperparameters
0 =los, £, ...]:

1 1 n
Inp(y|X, ) = 7§yT[K+ oty — 5 In[K+%o| = 5 In2r

e Maximize with respect to hyperparameter vector 6.

e Local maxima: different possible interpretations of the data.
E.g., noisy and long-¢ versus precise and short-¢

e Compare likelihoods to select the most appropriate kernel.
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Full treatment of hyperparameters uses MCMC integration

T, hyperparameter marginals
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Point estimate misses substantial uncertainty in gradient

Median relative uncertainties over 0 < ¢, <1

Quantity y y' a/L,
ne, MAP 1.2% 6.0% 6.0%
ne, MCMC 1.4% 8.4% 8.3%
Te, MAP 1.3% 3.7% 4.0%
Te, MCMC  1.4% 5.4% 5.6%
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Bad versus good choices for the hyperparameters have a

large effect on the likelihood
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Gettlng gradients and their uncertainties is straightforward
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The derivative of a GP is a GP:
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e Derivative equality constraint:
just add a datapoint!

o Derivative predictions:
predictive distribution contains
the uncertainty.
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Capturing the pedestal requires a non-stationary kernel

Gibbs kernel: ¢ is an arbitrary function of x

N o 20xix) )2 x x|
oo ) =7 (5% ) "(‘W>

Complete n, profile: Gibbs covariance kernel
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Gibbs kernel with tanh length scale has been extensively
tested with noisy synthetic data

core consistency
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Error estimates from Gibbs kernel with tanh length scale
have been shown to be asymptotically consistent using

noisy synthetic data
Asymptotic consistency of GPR fits
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gptools: An extensible, object-oriented Python package for

multivariate GPR including gradients

e Available GPR codes lack one or more critical features:
e Ability to both constrain and predict gradients.
o Straightforward way to draw random samples.

e gptools was written to meet these needs:

e Object-oriented structure.

o Interface for easy data fusion and application of constraints.

o SE, Gibbs, Matérn and RQ kernels with support for arbitrary
orders of differentiation.

e Available on GitHub: www.github.com/markchil /gptools
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www.github.com/markchil/gptools

gptools contains two classes for performing GPR

GaussianProcess
k : Kernel Kernel
nk : Kernel
X num_dim
n params
y fixed_params
erry param_bounds
add_data(X, y, err_y, n) __call__(Xi, Xj, ni, nj)
optimize_hyperparameters() set_hyperparams(new_params)
predict(X_star)
draw_sample(X_star)
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gptools: An extensible, object-oriented Python package for
multivariate GPR including gradients

0N O WN R

import gptools

# Create kernel:
k = gptools.SquaredExponentialKernel (1)
# Create GP:

gp = gptools.GaussianProcess(k, X=R_mid, y=Te, err_y=err_Te)

# Impose zero slope constraint at magnetic axis:
gp.add_data(R_mag, 0, n=1)

# Optimize hyperparameters:
gp.optimize_hyperparameters ()

# Make a prediction of the value:

R_star = scipy.linspace(R_mag, R_mid.max(), 100)
Te_fit, Te_std = gp.predict(R_star)

# Make a prediction of the gradient:

gradTe_fit, gradTe_std = gp.predict(R_star, n=1)
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gptools implements a very general form of GPR

A([]) =~(ls 69

5 05 0sllE #1 4))

_|

1
Ing=— g In2m — in ’TK(X,X)TT +ZM’

— (M = TH() T (TKEGX)TT + 40) 74 (M = Tu(X))

F(ML|M) = N (Tops(Xs) + T KXo, X)TT(TKX, X)TT + Zpp) "H(M = Tp(X)),
T K (X, Xa) T = T K (X, X)TT(TKX, X)TT + Zpp) THTK(X, X4)TT)

® Supports data of arbitrary dimension x € R".

® Supports explicit, parametric mean function u(x): can perform nonlinear
regression with GP fit to residuals.

® Supports arbitrary linear transformations T, T of inputs, outputs: can perform
tomographic inversions constrained with point measurements.

® Supports noise of arbitrary structure ¥, on observations.
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GPR: a probabilistic method to fit profiles

joint prior y: observation, y,: prediction
—f
f‘(y*7 y = 1) Joint, Marginal and Conditional PDFs
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—_—— f(y = 1) = 04 solid: marginal =
conditional posterior N~—— % 02 prior PDF 7 | fy"
“PDF of y. given y" marginal prior = o2
f(y):f f(ys,y) dys 00 T Jaghed: Conditional

posterior PDF

e Create multivariate normal prior
distribution that sets smoothness,
symmetry, etc.

e Condition on observations to yield _2l contourss ot prior PDF
the fit, including uncertainty
estimate. -2 -1 0 1 2 00020406

Y, 1)
e Distribution can include derivatives,

] . (PDF = “probability density function™)
line integrals, volume averages, etc.
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The properties of the fit are inferred using Bayes' rule
Given spatial covariance characterized by hyperparameter vector 6
and observations y, Bayes' rule is:

likelihood prior
~ N

f(y|6) 7(0)
F(Bly) =
Bly) = 113
posterior \df’

e Likelihood: Probability of observing the data y given the
hyperparameters 6. Simply a multivariate normal for GPR.

e Prior: Distribution encoding any prior assumptions about the
hyperparameters 6 (positivity, typical values, etc.)

e Evidence: Probability of the data under the model. Just a
normalization constant for parameter estimation.

e Posterior: Probability distribution for the hyperparameters 6
given the data y: the end-goal of the inference.
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Three levels of sophistication to select hyperparameters 6

likelihood prior

—— =
_ Fylo) 7(0)

(e
(0ly) = 2E
posterior S~~~

evidence
so-so: Maximum likelihood (ML): Pick the hyperparameters 6
that maximize the likelihood 7(y|0) of the data.

better: Maximum a posteriori (MAP, “empirical Bayes"): Pick
the hyperparameters @ that have the highest posterior
probability 7(0]y).
best: Marginalization (“full Bayes"): Average over the possible
hyperparameters when making a prediction y,:

Fy.ly) = / F(y.ly. 0)F(6ly)d6
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