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Overview: What do we know, and how well do we know it?

• Many quantities are not measured directly, instead are inferred
using complicated analysis codes (e.g., Qi , Qe from TRANSP
[1] or DZ , VZ from STRAHL [2]).

• Credible error estimates are critical when comparing these
results to simulations/theory.

• A variety of techniques are being tested to obtain error
estimates in a rigorous, automated manner.

• This poster presents recent progress in using Gaussian process
regression (GPR) to fit profiles and extract samples.

• The samples are used with STRAHL to get uncertainties on
impurity transport coefficients D, V for injected Ca in an
Alcator C-Mod L-mode.
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Motivation: Uncertainty quantification with profile inputs

Te(R, t)

Ti(R, t)

ne(R, t)

analysis/simulation code
(STRAHL, TRANSP, etc.)

D(R, t)

V (R, t)

Q(R, t)

Objective

Given the inputs and their uncertainties, measured at discrete
points, what are the outputs and their uncertainties?
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Typical scheme: sampling to estimate uncertainty

Te + δTe,1 ... Te + δTe,N

simulate ... simulate

Q1
... QN

compute µ, σ

Q ± σQ

• Te is the fitted estimate for the
input quantity.

• δTe,N is a random perturbation,
distributed according to the
uncertainty estimate on Te .

• The samples can be generated
using a variety of strategies,
including naive Monte Carlo,
Latin hypercube and
quasi-Monte Carlo sampling [3].

• QN is a possible realization of
the the output quantity.
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What advanced UQ techniques, GPR can contribute

• Provide better confidence in error estimates.

• Obtain reliable results with fewer expensive simulation runs.

• Provide statistically defensible, automated fits to entire
profiles without the need for time-consuming manual tuning.
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Option: Perturb individual data points, fit with spline
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• Often requires manual
supervision.

• Goodness versus complexity
of fit requires extra care.

• Handling multivariate data
(f (R, Z , φ, t)) is painful.

Notes on the plots

• Vertical red line indicates the magnetic axis.

• Data points are the average in a TS channel over the flattop

• Vertical error bars are ±1σ of Te within a channel. Horizontal error
bars are ±1σ of mapped Rmid but are not included in the analysis.
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Gaussian process regression (GPR) provides a better way
to fit profiles and produce input samples

GPR is a Bayesian non-parametric regression technique [4]

Bayesian: Prior encodes assumptions about the data.

Non-parametric: Data are not reduced into parameters.
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Univariate GPR on TS data

• Distribution of functions,
can sample directly.

• Variance gives the
uncertainty in the fit.

• Simple to get gradients
and their uncertainties.

• Generalization to
multivariate data is trivial.
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Terms and symbols used

GPR: Gaussian process regression

training data: The data to be fit: y(X), y ∈ Rn, X ∈ RD×n

test data: The predicted points: y∗(X∗), y∗ ∈ Rn∗ ,
X∗ ∈ RD×n∗

covariance function: Function giving the covariance between two
points: k(x , x ′), x , x ′ ∈ RD

covariance matrix: k evaluated between all cases: K = k(X, X),
K ∈ Rn×n, K∗ = k(X, X∗), K∗ ∈ Rn×n∗

hyperparameters: The parameters of the covariance function k .

In other words:

• n observations of quantity y are taken at n (D-dimensional)
locations x and combined into the vector y and matrix X.

• Predictions y∗ are then made at n∗ locations x∗ and combined
into vector y∗ and matrix X∗.

• The matrix K consists of the covariance function k evaluated
pairwise between each of the points x in X.
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A Gaussian process is a distribution over functions

f ∼ GP(m(x), k(x , x ′))

• m(x) is the mean function

• k(x , x ′) is the covariance function

For any set of points X, the value of y = f (X) is distributed as

y ∼ N (m(X), k(X, X))

This is an n-dimensional multivariate normal, where y ∈ Rn.
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The covariance function determines the spatial correlation
between points

expect close 
points to be 
strongly correlated

expect distant 
points to be 
weakly correlated

Common choice: squared
exponential (SE)

kSE(r) = σ2
f exp

(
− r2

2`2

)
r =

∣∣x − x ′∣∣
` sets the length scale of
drop-off in covariance, is not
the same as the gradient
scale length!
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Conditioning the prior on the training data

Prior: zero-mean multivariate normal[
y
y∗

]
∼ N

(
0,

[
K(X, X) + Σn K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
Σn is the noise covariance matrix.

Conditioning

Predictive distribution: prior conditioned on the training data

y∗|X, y ∼ N (K(X∗, X)[K(X, X) + Σn]
−1y ,

K(X∗, X∗)− K(X∗, X)[K(X, X) + Σn]
−1K(X, X∗))
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The predictive distribution contains the fit and its
uncertainty

• Mean is linear predictor for y∗(x∗):

y∗(x∗) = K(x∗, X)[K(X, X) + Σn]
−1y

=
n∑

i=1

αik(x i , x∗)

α = [K(X, X) + Σn]
−1y

• Diagonal elements of covariance give the uncertainty in the fit:

σ2
y∗ = k(x∗, x∗)− K(x∗, X)[K(X, X) + Σn]

−1K(X, x∗)
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Getting gradients and their uncertainties is straightforward
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The derivative of a GP is a GP:

cov

(
yi ,

∂yj
∂xdj

)
=

∂k(x i , x j)

∂xdj

cov

(
∂yi
∂xdi

,
∂yj
∂xdj

)
=

∂2k(x i , x j)

∂xdi ∂xdj

• Derivative equality constraint:
just add a datapoint!

• Derivative predictions:
predictive distribution contains
the uncertainty.
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The hyperparameters can be estimated by maximizing
the likelihood

Likelihood of the training data given k with hyperparameters
θ = [σf , `, . . . ]:

ln p(y |X, θ) = −1

2
yT[K + Σn]

−1y − 1

2
ln |K + Σn| −

n

2
ln 2π

• Maximize with respect to hyperparameter vector θ.

• Local maxima: different possible interpretations of the data.
E.g., noisy and long-` versus precise and short-`

• Compare likelihoods to select the most appropriate kernel.
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Bad versus good choices for the hyperparameters have a
large effect on the likelihood
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The hyperparameter space for the SE kernel appears to be
well-behaved

No slope constraint With slope constraint
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Drawing random samples is straightforward

Just sampling a multivariate normal:

ỹ∗ = m + Lu

m = K(X∗, X)[K(X, X) + Σn]
−1y (the predictive mean)

Kp = LLT (Cholesky decomposition)

u ∼ N (0, I) (n∗ independent standard

normal variables)

More powerful way of writing the matrix square root:

Kp = QΛQ−1 = QΛ1/2(QΛ1/2)T

(Because Kp is symmetric, Q−1 = QT.)

Can truncate eigendecomposition to reduce dimensionality.
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Samples of Te and dTe/dR can be extracted together

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

T
e 

[k
e
V

]

0.70 0.75 0.80 0.85
R [m]

30
25
20
15
10

5
0

d
T
e/
d
R

 [
ke

V
/m

]

C
-M

o
d
 s

h
o
t 

1
1

2
0

8
0

8
0

2
4

Univariate GPR on TS data
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Capturing the pedestal requires a non-stationary kernel

Gibbs kernel [5]: ` is an arbitrary function of x

kG(x , x ′) = σ2
f

(
2`(x)`(x ′)

`2(x) + `2(x ′)

)1/2

exp

(
− |x − x ′|2

`2(x) + `2(x ′)

)

• Preliminary implementation

• Length scale:

` =
`1 + `2

2

− `1 − `2
2

tanh
x − x0
`w

• Picked `1, `2, `w and x0 by
maximizing ln p.

18/32



gptools: An extensible, object-oriented Python package for
multivariate GPR including gradients

• Available GPR codes lack one or more critical features:
• Ability to both constrain and predict gradients.
• Straightforward way to draw random samples.

• gptools was written to meet these needs:
• Object-oriented structure.
• Interface for easy data fusion and application of constraints.
• SE, Gibbs, Matérn and RQ kernels with support for arbitrary

orders of differentiation.

• Available on GitHub: www.github.com/markchil/gptools
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gptools contains two classes for performing GPR

GaussianProcess

k : Kernel
nk : Kernel
X
n
y
err y

add data(X, y, err y, n)
optimize hyperparameters()
predict(X star)
draw sample(X star)

Kernel

num dim
params
fixed params
param bounds

call (Xi, Xj, ni, nj)
set hyperparams(new params)
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Impurity transport in Alcator C-Mod is explored using a
laser blow-off impurity injector

Controlled injections are a powerful tool to probe transport

• Small (nonperturbative) injection of a non-intrinsic,
non-recycling impurity (such as calcium) enables systematic
study of impurity transport [6, 7].

• Larger injections are used to induce cold pulses to investigate
non-local thermal transport (see C. Gao et al., TP8.00036).

• Injection of Mo used to probe poloidal asymmetries and their
effects (see M.L. Reinke et al., TP8.00037).

Hardware overview

• Motorized steering for between-shot positioning.

• Piezoelectric steering for in-shot movement of beam.

• Fast steering and 10Hz laser repetition rate enables multiple
injections into a shot.
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Impurity transport coefficients are inferred using STRAHL
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Figure originally from [6].

• Given a guess for the D, V profile, STRAHL produces a
prediction of the evolution of the impurity density profile.

• This is converted to the Ca18+ emissivity profile, which is
line-integrated and compared to the brightness measured with
an x-ray imaging crystal spectrometer [8].

• The D and V profiles are iterated upon to find the best fit.
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Naive Monte Carlo sampling with GPR has been applied to
Ca transport in a C-Mod L-mode

�t is relatively 
insensitive to outlier

spline is 
�atter, lower 
near Rmag

data fusion of multiple TS, ECE diagnostics 
helps reduce the uncertainty in the �t

Gibbs kernel used to capture 
the rapid change at the edge

Temperature Pro�le
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Density Pro�le

spline and GPR �t agree well 
over the domain used
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Initial GPR results mostly agree with previous results
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Discussion of initial STRAHL results

• The results are not trusted outside of the range shown
(0 < r/a < 0.6).

• Within this domain, the spline-based approach and the
GPR-based approach produce similar values, but GPR tends
to predict a larger error.

• Neither approach included errors in Rmid , which will be
considered in a future study.

• The previous spline-based calculation might not be fully
converged.

• GPR seems to show a more stable convergence across the
domain.

• Large jumps in the spline-based values between iterations
could indicate that robust estimators/other outlier mitigation
needs to be used.
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GPR shows promise as a tool to make uncertainty
estimation more rigorous, more automated

• GPR is a nonparametric Bayesian regression technique.

• Naive Monte Carlo sampling has been applied to GPR fits of
the ne , Te profiles input into the STRAHL code to determine
the uncertainties in the D, V profiles.

• The initial results seem to mostly agree with the previous
uncertainty estimates using spline fits.

• GPR seems to show better convergence than the use of
spline-based samples.
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Future work

• Account for additional uncertainties: Rmid mapping,
uncertainty in hyperparameters.

• Better characterize convergence.

• Assess advanced sampling methods (LHS, QMC) to improve
convergence speed.

• Apply to other codes and other plasma conditions.
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