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Abstract

As plasma physics research for fusion energy transitions to an increasing empha-
sis on cross-machine collaboration and numerical simulation, it becomes increas-
ingly important that portable tools be developed to enable data from diverse
sources to be analyzed in a consistent manner. This paper presents eqtools, a
modular, extensible, open-source toolkit implemented in the Python program-
ming language for handling magnetic equilibria and associated data from toka-
maks. eqtools provides a single interface for working with magnetic equilib-
rium data, both for handling derived quantities and mapping between coordi-
nate systems, extensible to function with data from different experiments, data
formats, and magnetic reconstruction codes, replacing the diverse, non-portable
solutions currently in use. Moreover, while the open-source Python program-
ming language offers a number of advantages as a scripting language for research
purposes, the lack of basic tokamak-specific functionality has impeded the adop-
tion of the language for regular use. Implementing equilibrium-mapping tools
in Python removes a substantial barrier to new development in and porting
legacy code into Python. In this paper, we introduce the design of the eqtools
package and detail the workflow for usage and expansion to additional devices.
The implementation of a novel three-dimensional spline solution (in two spatial
dimensions and in time) is also detailed. Finally, verification and benchmarking
for accuracy and speed against existing tools are detailed. Wider deployment of
these tools will enable efficient sharing of data and software between institutions
and machines as well as self-consistent analysis of the shared data.
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1. Introduction

The basic computational tasks associated with magnetic equilibrium recon-
structions – namely, the handling of derived quantities (e.g., calculated plasma
current, safety-factor profile) and the mapping between real-space and flux co-
ordinate systems for experimental data – are universal among tokamak experi-
ments. Despite this commonality, experiments typically utilize locally-developed
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solutions developed for the particulars of that experiment’s data storage and us-
age. This ad-hoc development of base-level functionality inhibits the mobility
of higher-level codes to other devices (as the code may require substantial mod-
ification to address the particulars of the new data storage design). Moreover,
such development is often quite static, such that the implementation is difficult
to extend to new data formats (e.g., to handle both a primary MDSplus-based
data storage system [1] and the eqdsk storage files produced directly by the
EFIT reconstruction code [2]), necessitating parallel workflows for functionally
identical tasks depending on the data source. Best design practices call for
the vagaries of data source and storage implementation to be placed in the
back end, presenting a consistent, straightforward interface common between
machines and code implementations to the research scientist.

The new eqtools package provides a modular, extensible, cross-machine
toolkit developed in the Python programming language for handling magnetic
equilibrium data. The eqtools package provides a consistent and straightfor-
ward interface to the researcher for both coordinate mapping routines (histori-
cally handled in separate standalone routines) and access to derived quantities
(often handled with manual hooks into data storage). Moreover, eqtools is
constructed with a modular, object-oriented design, such that the package is
easily extensible to handle data from different experiments and reconstruction
codes, giving the researcher a single unified interface for data from any ma-
chine or code. The implementation of reconstructed-equilibrium handling in
the Python language removes a substantial barrier to the adoption of Python as
a day-to-day analysis language for tokamak research, which offers numerous ad-
vantages in ease of use, computational speed, user/developer base, and free and
open-source implementations compared to current common working languages
for fusion research. The eqtools package is open-source and licensed under the
GNU General Public License [3], and distributed via PyPI [4, 5, 6].

This paper details the design and implementation of eqtools, particularly
the paradigm for extension to new machines (section 2), describes the basic
algorithms used to convert between coordinate systems (section 3), describes the
implementation of a novel trivariate spline method for improved interpolation
in the time dimension (section 4), presents runtime and accuracy benchmarks
against the current IDL1 implementation at Alcator C-Mod (section 5), and
shows examples of the code in use (section 6).

2. Package Design and Use

The eqtools package is designed to present a consistent, human-readable
interface to the user for both data handling of derived quantities and mapping
routines between coordinate systems, all contained within a single persistent
object (herein referenced in code snippets as eq). For example, accessing the
calculated value for the poloidal flux on-axis, ψ0, is simply eq.getFluxAxis()

1IDL is a registered trademark of Exelis Visual Information Solutions.
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– this replaces arrangements that may involve cumbersome manual hooks into
the data system and interaction with opaque internal EFIT variable names.
Similarly, mapping routines are handled internally in the eq object – mapping
from (R,Z) coordinates to normalized poloidal flux ψn, for example, is simply
eq.rz2psinorm(R,Z,t,...). One notable consequence of this object-oriented
approach is that intermediate spline calculations for the mapping routines are
stored in the persistent object – compared to typical standalone mapping rou-
tines (which must start from scratch for each function call) this allows substan-
tial speed gains for subsequent mapping calculations with the same equilibrium
object, as is illustrated in section 5.

The eqtools package is structured such that the user-facing methods (for
data access and coordinate mapping) are consistent for different machines or
reconstruction codes. Moreover, adding support for new machines or codes
requires minimal new code development. The package inheritance structure
is depicted in figure 1. The base level of the inheritance structure (shown in
blue in figure 1) provides the abstract class Equilibrium – this defines the
prototypical structure for the data (ensuring that child classes use a consistent
format) and defines the mapping routines, which are inherited and used by each
child class. The methods therein are sufficiently general to be used by any
grid-based equilibrium reconstruction.

An intermediate inheritance level (shown in yellow in figure 1) provides sup-
port for specific codes and data systems (while still maintaining cross-machine
generality) – for example, the EFITTree class provides methods for EFIT recon-
structions stored in MDSplus tree structures (as is used on C-Mod, NSTX, and
DIII-D). This minimizes the need for repeated code in machine-specific versions
of common code implementations. The user-facing inheritance level (shown in
green in figure 1) finalizes the specific details of implementation for a given
reconstruction code, data-storage methodology, and machine implementation
(e.g., CModEFITTree, NSTXEFITTree, D3DEFITTree). These user-facing imple-
mentations typically require relatively little code (on the order of 100 lines in
the case of CModEFITTree and NSTXEFITTree), and extension modules to the
code can be quickly developed in most cases.

In addition to the already-developed modules inheriting EFITTree, the code
currently contains the EqdskReader module, which directly interfaces with the
eqdsk text files (specifically, the “g-file” and “a-file” containers, which store
equilibrium and scalar derived quantities, respectively) generated by EFIT.
This allows a single unified interface for both the MDSplus-based and portable
text file data storage common to US experiments. Due to the unique struc-
ture of the code necessary to read text file data (which is done directly in
EqdskReader), EqdskReader directly inherits mapping routines and structure
from Equilibrium, without an intermediate stage. However, as new text-file-
based storage methods are implemented in eqtools sufficient commonality may
be found to necessitate the creation of an intermediate abstraction level for gen-
eralized text file storage systems in subsequent versions of the eqtools package.

In addition to the EqdskReader module, which handles equilibrium and
derived-quantity data from g- and a-file outputs from EFIT, the eqtools pack-
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Equilibrium
• provides abstract 
methods for getters
• provides coordinate 
mapping routines

EFITTree
provides abstract 
handling for EFIT 
results in MDSplus 
trees

other codes, data 
storage methods, etc.

CModEFITTree
implementation for 
standard C-Mod 
equilibria

NSTXEFITTree
implementation for 
standard NSTX 
equilibria

D3DEFITTree
implementation for 
standard DIII-D 
equilibria

other machines

EqdskReader
provides direct 
handling of eqdsk 
files from EFIT code

filewriter
produces g-file from 
time slice in 
Equilibrium object

PFileReader
provides handling of 
p-file profile data 
used by EFIT

Figure 1: Package structure for the eqtools package. The base abstract class (blue) provides
a prototypical structure for the derived-data handlers, as well as providing the complete set
of coordinate-mapping routines. Intermediate abstract classes (yellow) prescribe the handling
for data storage systems and codes – at present the relatively-ubiquitous EFIT reconstruction
stored in MDSplus tree structures is provided. User-facing classes (green) handle the details
of machine-specific implementations. Dashed lines denote classes that have not yet been
implemented, but which can be introduced into the package in a straightforward manner due
to its modular construction. The user interface is consistent, as it is provided by the parent
classes – code migration between machines requires only changing which child class is called for
the reconstruction. The EqdskReader class, which directly handles eqdsk text files from EFIT,
inherits directly from the base class as it is sufficiently unique to not warrant an intermediate
abstract class. Outside the Equilibrium inheritance structure, the package also provides the
PFileReader class to handle the “p-file” plasma profile data associated with EFIT, as well as
the filewriter module to produce portable g-files from Equilibrium objects.
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age provides a PFileReader object to handle plasma-profile data from the “p-
files” associated with EFIT. While this does not require access to the recon-
structed equilibrium (and thus is separate from the Equilibrium inheritance
structure) profile data is commonly paired with the reconstructed equilibrium
– as such, the eqtools package provides a built-in methodology to handle the
additional data. The eqtools package also contains a package-level method,
filewriter, to produce g-files from classes in the Equilibrium inheritance
tree, allowing easy generation of portable datasets from the main (for example,
MDSplus tree) data-storage method.

3. Details of the coordinate mapping routines

eqtools supports transformations between a wide variety of coordinates in
common use including real-space (R,Z) coordinates, mapped outboard mid-
plane major radius Rmid, normalized minor radius r/a, unnormalized poloidal
flux ψ, normalized poloidal flux ψn, normalized toroidal flux φn, normalized flux
surface volume Vn and the square roots of these quantities.

The most important transformation maps a given point (R,Z) at a given
time t to the poloidal flux ψ at that location as computed with the magnetic
reconstruction code. The default implementation uses a nearest-neighbor in-
terpolation in time: the code first retrieves the flux reconstruction at the time
closest to t, then a bivariate interpolating spline [7, 8] is used to map from
(R,Z) to ψ. The bivariate spline coefficients from each time are stored in mem-
ory as they are computed in order to speed up subsequent calculations at that
time slice. A more advanced method using a tricubic interpolating spline to
interpolate smoothly in space and time is described in section 4.

Once the coordinate has been mapped to ψ, subsequent calculations are
simpler. Normalized poloidal flux is defined as

ψn =
ψ − ψ0

ψa − ψ0
, (1)

where ψ0 is the poloidal flux at the magnetic axis and ψa is the poloidal flux at
the boundary. To ensure self-consistency, the default behavior is to use nearest-
neighbor interpolation to get the values of ψ0 and ψa at the desired time. When
a tricubic spline is used to map from (R,Z) to ψ a cubic spline is used to
interpolate ψ0 and ψa in time.

Normalized toroidal flux is defined in terms of normalized poloidal flux as

φ(ψ) =

∫ ψ

ψ0

q(ψ′) dψ′

φn =
φ

φa
,

(2)

where q(ψ) = dφ/dψ is the safety factor profile (typically computed when EFIT

is run) and φa =
∫ ψa

ψ0
q(ψ′) dψ′ is the toroidal flux at the last closed flux surface.

The integral in (2) is numerically evaluated using the trapezoid rule.
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The normalized flux surface volume is defined as

Vn(ψ) =
V (ψ)

Va
, (3)

where V (ψ) is the volume enclosed by the (closed) flux surface with flux ψ and
Va is the volume enclosed by the last closed flux surface. In the case of Alcator
C-Mod, the flux surface volume V (ψ) is computed automatically when EFIT is
run, but it would be straightforward to override the getFluxVol() method of
the Equilibrium class to compute this from the ψ(R,Z) grid when this quantity
is not already available in the tree.

Mapping from ψn to Rmid is accomplished by forming a dense radial grid
of R points that go from the magnetic axis to the edge of the grid the flux
is reconstructed on, finding the vertical location of the magnetic axis at the
desired time(s) (called Z0), then converting the resulting (R,Z0) points to ψn

with the routines described above. This one-to-one mapping between Rmid and
ψn is then interpolated to give the desired conversion from ψn to Rmid.

By default, r/a is defined in terms of Rmid as

r/a =
Rmid −R0

Ra −R0
, (4)

where R0 is the major radius of the magnetic axis and Ra is the outboard
midplane major radius of the last closed flux surface. Since other definitions
of r/a are preferred when the Shafranov shift is high, the specific definition
of r/a can be changed simply by overriding the methods _rmid2roa(...) and
_roa2rmid(...) in the Equilibrium class. Variants on these basic routines are
then used to map between other pairs of coordinates.

4. Tri-Spline Implementation

Typically, coordinates are determined via nearest-neighbor interpolation to
the reconstruction timebase. When the timebase of the equilibrium recon-
struction is coarser than and/or offset from the desired timebase this can in-
duce aliasing and discontinuities (as can be seen in figure 2). These limit the
nearest-neighbor approach when considering fast timescale behaviors with com-
paratively slow reconstructions. When reconstruction achieves the Nyquist fre-
quency, an additional interpolation in time can accurately remove aliasing er-
rors induced by this timebase mismatch. The additional temporal dimension
requires the use of higher-dimensional interpolators, for which a fast tricubic
interpolation scheme has been developed.

A tricubic interpolating spline [9] is used to evaluate the three-dimensional
flux grid as a function of R, Z and t. The additional time dimension and
subsequent higher dimensionality increases the evaluation time of the mapping
routines. The (R,Z, t) points are assumed to form a tensor product grid which
allows for the use of finite element matrix methods for extracting the derivatives
used to compute the necessary spline coefficients. The higher dimensionality of
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(a) (b)

Figure 2: Flux surface reconstruction in time of an Alcator C-Mod discharge using nearest-
neighbor time interpolation (a) and a tricubic spline interpolation (b). Aliasing behavior is
removed by the use of a spline in the time-dimension.

the problem scales the necessary computational time due to the increased nec-
essary information (64-fold increase in matrix computation). Other non-three-
dimensional parameters also require further computation due to the inherent
complication of increasing the number of dimensions. Persistence of the coeffi-
cients allows for similar computational times to previous equilibrium mappings
when subject to calculations in the same voxel, but the overall computation is
still slower when compared to lower-dimensional mapping.

The code for the tricubic spline interpolation was written in C and was in-
tegrated into Python using the F2PY package [10]. Two separate methods are
used to calculate and evaluate the spline, dependent on the nature of the grid.
In cases which the grid is regular, the novel inclusion of a finite-difference matrix
into the spline coefficient matrix reduces computational time (see Appendix Ap-
pendix A). In other cases, the derivatives in the necessary directions and orders
are calculated before being used in the spline coefficient matrix multiplication.
The C code is compartmentalized and can accept arbitrary three dimensional
data, so other programming languages and codes with sufficient C APIs can
access the optimized trispline code for general use.

5. Verification and Benchmarking

eqtools has been verified against the existing, thoroughly-tested IDL rou-
tines presently in use for handling coordinate mapping at Alcator C-Mod. Fig-
ure 3 shows the discrepancy between the IDL routines and eqtools for the
conversion of (R,Z) to ψ. The differences are small (of order 10−7 Wb/rad,
compared to a signal of order ±0.5Wb/rad), and are consistent with the fact
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Figure 3: Absolute difference between calculations of a mapping between the (R,Z) grid and
poloidal flux ψ for eqtools and the current IDL implementation of the mapping routine for an
example Alcator C-Mod reconstructed equilibrium. Relative differences of order 10−7 Wb/rad
are typical (the value of ψ is in the range ±0.5Wb/rad), and are consistent with the different
float precisions used.

that Python used double precision whereas IDL used single precision for the
test.2 Timing tests were conducted by converting a 66 × 66 element (R,Z)
grid (double the density of the grid EFIT provides the flux on) into each of the
coordinates supported. This conversion was performed at 180 time slices (dou-
ble the temporal resolution output by EFIT) and nearest-neighbor temporal
interpolation was used. The test was run both with all points being processed
at once (denoted “all” in Table 1) and with the routine being called inside a
loop over all time points (denoted “loop” in Table 1). The conversion was per-
formed twice with the same Equilibrium object in eqtools in order to assess
the time savings from storing the spline coefficients. The IDL routines (with
the exception of the conversion to Rmid) support reuse of the spline coefficients
from a single time slice, so a second run of the IDL code with the stored spline
coefficients was performed when looping over time slices. The test was repeated

2The data are retrieved from MDSplus in single precision but must be cast to double
precision for the Python spline routines to work properly. While IDL can work in double
precision, it defaults to single precision when given single precision input data.
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Table 1: Time to convert all 180 time slices in milliseconds. “All” refers to passing all points
to the routine at once, whereas “loop” refers to calling the routine in a loop over time points.
“First” refers to the first call to the routine when data are collected from the server and
spline coefficients are computed, “second” refers to the second call once the data and spline
coefficients have been cached.

Conversion IDL eqtools

all loop all loop
first second first second first second first second

(R,Z) → ψ 149 — 3147 3052 134 116 179 161
(R,Z) → ψn 163 — 4024 3880 137 119 184 165
(R,Z) → φn 473 — 5307 5196 254 165 303 215
(R,Z) → Vn 468 — 5326 5220 253 164 302 215
(R,Z) → Rmid 1400 — 5328 — 942 187 993 238

100 times, and the mean execution time to convert the (R,Z) grid for all time
points is given in Table 1.

In all cases eqtools is faster than the IDL routines. Furthermore, the test
results highlight the additional flexibility eqtools provides users. For the most
efficient case where all of the points are passed at once, eqtools is only slightly
faster for the simple conversions of (R,Z) to ψ and ψn. But, for the more
complicated conversions to φn, Vn and Rmid, eqtools is anywhere from 1.5 to
1.9 times faster than the IDL routines. Furthermore, the caching of intermediate
results in eqtools accelerates the second call to a routine by as much as a factor
of 5 (for the conversion to Rmid). Where eqtools stands in stark contrast to
the IDL routines is the case where the conversions are evaluated in a loop.
While this case is not something which would be used directly as both codes
support the evaluation of multiple time points at once, it is indicative of the
performance to be expected should a user write a script which needs to evaluate
each time point on a different grid, or otherwise needs the flexibility to split an
operation up into steps applied to each time point. For this case, eqtools is
anywhere from 5 to 20 times faster than the IDL routines. This is believed to be
a result of the large overhead associated with function calls in the IDL language.
These test results highlight the improved performance and extra programming
flexibility provided by eqtools.

6. Example Applications

6.1. Tomographic Reconstruction

Tomography consists of using sets of unique line-integrated measurements
and mathematically reducing the data to profiles of chosen basis functions.
These basis functions are typically radial in nature, with angular dependence
represented by a Fourier series. When combined, the data are used to recon-
struct the characteristics within the volume of interest. eqtools provides a sim-
ple and direct interface for converting (R,Z) coordinates into equilibrium-based
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Figure 4: A viewing chord of the soft X-ray tomography system (XTOMO) is shown on an
example plasma in blue (a), the view weight is maximized at the location closest to the center
of the plasma (in ψn). The effects of angular harmonics are shown by sinusoidal component
weights which can negative. This example uses 150 bins in ψn with a 10µm step size.

coordinates. A new, Python-based tomography code known as the Toroidal In-
version Radiation Protocol in Python (TRIPPy) [11] was implemented using
eqtools. The underlying use of eqtools allows for consistent tomographic
reconstruction of various line-integrated data for a number of tokamaks.

TRIPPy solves for the weighting of a line of sight on a flux-based radial coordi-
nate and a Fourier angular coordinate. Each measured line-integral through the
plasma is discretized to small finite length segments. Each segment is mapped
using eqtools, and its length is fractionally added a predetermined grid in the
basis coordinates. Many lines of sight create a linear mapping between the line-
integrated measurements and the unknown profiles. This inverse problem can
be solved using any number of numerical methods.

TRIPPy and eqtools have been implemented for the Alcator C-Mod and
NSTX-U tokamaks and has been used to benchmark tomography systems on
those machines [12]. The grid size in flux space must be larger than the size of the
length discretization in order to properly resolve features in the plasma. Shown
in figure 4 is an example line of sight using the soft X-ray tomography system
on Alcator C-Mod [13]. Tomographic reconstruction through TRIPPy can give
insight of the emission of radiation and the temperature of the plasma while
also determining the character of magnetohydrodynamic modes. The consis-
tent and extensible design of both TRIPPy and eqtools allows for tomographic
reconstruction to be implemented for multiple diagnostics on many tokamaks.
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(a) equilibrium (b) data and smoothed profile

Figure 5: Equilibrium with diagnostic locations (a) and individual measurements with
smoothed electron temperature profile (b). The data include edge [19] and core [20] Thomson
Scattering systems (ETS, CTS) which measure the local temperature along a vertical chord
and two electron cyclotron emission systems (GPC, GPC2) which measure the temperature at
the midplane [21]. The symbols are the same between the two figures. The fit and its 1- and
3-sigma error envelopes were computed using Gaussian process regression with the maximum
a posteriori estimate for the hyperparameters.

6.2. Profile fitting

Combining data from multiple diagnostics into a consistent, smooth profile
is a fundamental task in experimental plasma physics. profiletools [14, 15]
is a Python package which aims to simplify this task by presenting a uniform
interface to load, time-average, combine and fit data from different diagnostics.
eqtools is used internally by profiletools both to map diagnostics to a con-
sistent grid and to output the smooth fit in the desired coordinates. In line with
the eqtools philosophy of shielding the user from obtuse calls to the underlying
data system (be it MDSplus or some other system), for each diagnostic sup-
ported, profiletools provides a function to fetch the data (and the accompa-
nying error bars). These quantities are returned in a BivariatePlasmaProfile

object, where “bivariate” refers to the fact that the data are, in general, a
function of space and time. The coordinates the measurement locations are
stored in can be converted using the convert_abscissa(...)method. Multiple
BivariatePlasmaProfile instances from different diagnostics or even different
shots can be combined as necessary using the add_profile method. The com-
bined data set can then be used to predict a smoothed profile using Gaussian
process regression [16] through integration with the gptools Python package
[17, 18]. An example of this sensor fusion task is shown in Figure 5. The use
of eqtools to provide consistent coordinate transformations and a consistent

12



interface for combining data from multiple diagnostics simplifies the task of
building automated data analysis workflows.

7. Summary

The eqtools package provides a modular, extensible framework for handling
the basic tasks associated with magnetic equilibrium reconstructions for toka-
maks – namely, accessing derived quantities and mapping between real-space
and flux coordinate systems for experimental data. This package, developed
in the open-source Python programming language and freely available from
Github and PyPI [4, 5, 6], presents a consistent, user-friendly interface indepen-
dent of data source or storage method. eqtools replaces machine- and storage-
specific methods which are often nonintuitive to use and which use a static code
structure that can be difficult to extend for experimental data from multiple
machines, storage methods, or reconstruction codes. Moreover, the eqtools

package is designed with a modular, object-oriented construction, such that the
package is easily extended to include new experiments, reconstruction codes,
and data storage methods. In the current distribution version, EFIT recon-
structions [2] in MDSplus-based data storage from NSTX, C-Mod, and DIII-D
are implemented, along with a class to read the portable eqdsk datafile.

The package includes a complete set of mapping routines between real-
space machine coordinates (i.e., the (R,Z) grid defined for the reconstruction),
midplane-mapped real-space coordinates (major radius and normalized minor
radius), and flux-space coordinate systems (normalized poloidal and toroidal
flux and normalized flux surface volume), as well as their square roots. In
short, the coordinate systems customarily used in a broad variety of analysis
applications are supported within a single unified user interface. In addition to
the standard bivariate analysis mapping the R and Z coordinate with nearest-
neighbor interpolation in time (as is presently used in the mapping routines at
C-Mod), eqtools includes a novel trivariate spline implementation to provide
smooth interpolation along the time axis as well. This allows the user to op-
tionally trade computational time for a substantially more accurate treatment
of the time variation in cases where experimental data are sampled at times
significantly different from the reconstruction timebase.

The mapping routines in eqtools have been thoroughly benchmarked against
the existing IDL implementations used at Alcator C-Mod. Mapping results from
eqtools are consistent with the previous IDL results to within numerical error
(arising from double-precision calculations in Python compared to the default
single precision used in IDL). Initial runs of the eqtools mapping routines are
a factor of three to ten faster than the previous IDL implementation. Moreover,
as the persistent Equilibrium object stores intermediate calculations in the
mapping routines, subsequent calculations with the same shot show additional
speed improvements compared to the IDL implementation.

The development of eqtools clears a substantial hurdle to the adoption of
Python as a standard data analysis language for tokamak research, the use of
which offers numerous advantages in terms of development base and support,
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computational speed, ease of adoption, and cost over other languages in common
use at present. Additionally, eqtools allows for substantially more straightfor-
ward implementation of cross-machine analysis tools, a significant benefit in
light of increasing emphasis on modeling and cross-machine collaboration in
fusion research.
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Appendix A. Generation of tricubic spline coefficients for a regular
grid

Significant time savings can be recovered for tricubic interpolation compu-
tation when the data grid (f(x, y, z)) is regular, which is often the case for sets
of magnetic equilibria. Recovering the spline coefficients requires the calcula-
tion of a number of derivatives in each dimension, which for a regular grid can
be achieved with finite difference matrix B. The new a priori inclusion of B
in the spline calculation matrix Ainv (defined as A∗

inv) removes the necessary
derivative generation and reduces total computation by half. This calculation
requires a collection of the nearest 4× 4× 4 grid of values y to the coordinates
of interest x, y, z to extract spline coefficients x.

x = Ainv(By) = A∗
invy (A.1)

Where
A∗

inv = AinvB (A.2)

y comprises the values of the grid necessary for calculating the derivatives
at the corners of the voxel f , and must be made into a form which is ap-
propriate for Ainv. Ainv expects the values of f at each voxel corners then
∂f
∂x ,

∂f
∂y ,

∂f
∂z ,

∂2f
∂x∂y ,

∂2f
∂y∂z ,

∂2f
∂x∂z ,

∂3f
∂x∂y∂z in the same manner. B converts the points

into these derivatives, through first order finite difference matrices for ∂f∂x ,
∂f
∂y ,

∂f
∂z ,

second order finite difference matrices for ∂2f
∂x∂y ,

∂2f
∂y∂z ,

∂2f
∂x∂z , and a third-order for

∂3f
∂x∂y∂z . The form of B is dependent on the form of y for the formation of the
finite differences.
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